vulnerability
VMware Photon OS: CVE-2025-39684
| Severity | CVSS | Published | Added | Modified |
|---|---|---|---|---|
| 6 | (AV:L/AC:L/Au:S/C:C/I:N/A:C) | Sep 5, 2025 | Oct 10, 2025 | Oct 23, 2025 |
Severity
6
CVSS
(AV:L/AC:L/Au:S/C:C/I:N/A:C)
Published
Sep 5, 2025
Added
Oct 10, 2025
Modified
Oct 23, 2025
Description
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer.
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer.
Solution
vmware-photon_os_update_tdnf
NEW
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.