
Hands-On IoT Hacking:
From Memory
Manipulation to Root
Access
By Deral Heiland - Principal Security Researcher, IoT.

December 2023

Table of Contents

Summary of Exercise 4

Part 1: Setup and U-Boot Access 5

Part 2: Extract Firmware 11

Part 3: Carve Firmware from SD card 15

Part 4: Extract File Systems and Crack Root Password 18

Part 5: Identify and Modify Memory and Gain Root Access 21

About Rapid7 29

2

Rapid7 was back this year at DEF CON 31, participating once again at the IoT Village with

our hands-on hardware hacking exercise that teaches attendees various concepts and

methods for IoT hacking. And just in time for the holiday season, I’m gifting our readers

with an in-depth write-up of the exercise we ran, along with some expanded context

based on the questions and discussion we had at this year's event.

This year's exercise focused on the following key areas and applications:

● Universal Asynchronous Receiver/Transmitter (UART)

● U-Boot console commands

● Relocaddr

● Alter boot image memory.

● XMUART

● Binwalk

● Linux dd command

● John-the-ripper

● Hexedit

● XM Smart Home Camera

Shout Out: While working on building this exercise I used the following online source of

information which covered this actual method for bypassing the filters on an IP Camera

using XM530 CPU. The camera in Andrzej Szombierski’s writeup was a different

brand/model and offsets addresses were different, but for the most part it is 100% the

same method. So, I want to give credit where credit is due.

So let’s get started!

3

http://kuku.eu.org/?projects/xm530/part1

Summary of Exercise

The goal of this hands-on hardware hacking exercise is to gain root access to an IP

Camera over Universal Asynchronous Receiver/Transmitter (UART) by manipulating

U-Boots running memory to disable a filter, which prevents the user from making certain

changes to the U-Boot environment variables.

To do this, the user will interact with the device via U-Boot console over a UART

connection on the device’s circuit board. With UART access, the user will extract the

firmware onto an SD card using U-Boot commands, move it to the laptop and use binwalk

to extract the file system, and then extract the password hashes from the passwd file and

crack the root password.

Once that is done, the user will also evaluate the binary to determine the memory offset

of the U-Boot filter data, which will then be combined with the base address of U-Boot in

memory to determine the location of the filter and alter its running memory. This will

allow the user to make needed changes to U-Boot environment variables to enable a

working UART console, allowing them to login with the cracked root password on the IP

Camera.

4

Part 1: Setup and U-Boot Access

The first step is to identify the camera’s Universal Asynchronous Receiver Transmitter

(UART) port and connect an FTDI device to that, plug in power via USB on the camera, and

then boot the system and observe the boot up and initial operations of the system.

Note: Future Technology Devices International Limited (aka FTDI) is a hardware product

designed to connect TTL Logic Serial communication to a USB bus.

The FTDI hardware to the UART header connection on the camera device is shown below

in the training unit we used at DEF CON. Figure 1 below shows the proper UART pinout for

each device. When connecting UART, it is important to note that wiring crosses over as

TXD to RXD, and vice-versa.

Figure 1: FTDI hardware to UART header connection

Once UART wiring is attached, you will also need to attach the USB cables between the

FTDI and the laptop, and then the IP camera and the power plug. Everything should be

hooked as shown below in Figure 2.

Figure 2: USB and wiring connections

5

In the IoT Village exercise lab we used gtkterm installed on an Ubuntu 22 Linux laptop, but

any serial terminal can be used including the screen command on Linux systems. To run

gtkterm first, open the command line terminal and launch the serial application “gtkterm”

as root by running the following command in the terminal and when prompted, enter the

correct password. Running as root allows proper communication access to the FTDI

device.

sudo gtkterm

Figure 3: Launch gtkterm

Once gtkterm is running, you will need to configure gtkterm to properly communicate with

the IP camera over UART. This is done by selecting “configuration -> port” from the task

bar within the gtkterm application as shown in Figure 4 below, then making any necessary

changes to the configuration setting so they match the settings shown in Table 1.

Figure 4: Configure gtkterm

6

Table 1: gtkterm Configuration Settings

Port: /dev/ttyUSB0

Baud Rate: 115200

Parity: none

Bits: 8

Stopbits: 1

Flow control: none

Once the gtkterm settings have been confirmed you can power up the camera device. At

this point you should see the camera boot up as shown below in Figure 5.

Figure 5: Camera power-up boot

If you do not see the camera device booting up, then you need to re-examine previous

steps to make sure UART wiring is correct and that gtkterm configuration settings are

correct.

Examining the boot process displayed on the gtkterm screen, you can see that once the

device echoes “booting the kernel” that the console displays no more usable information

and does not respond to any interaction from your keyboard.

7

You should also see “Press Ctrl+C to stop autoboot”. This allows you to stop the boot

process before kernel loads. By stopping autoboot you will gain access to the U-Boot

console, which will allow you to run several other commands.

To stop the autoboot process and drop into the U-Boot console, you need to first power

off the device, wait 5-10 seconds, and then power it back on to restart the system.

On system restart, hit the key combination of CTRL and C (Ctrl+C) a couple of times

before the “Starting kernel” displays. You will need to do this quickly; if you fail to halt the

boot process then power off and try again. Once you are successful in stopping autoboot,

you should be in the U-Boot console as shown below in Figure 6.

Figure 6: U-Boot console

Next, I recommend running a few simple U-Boot console commands so you can see

some of the different commands and environment variables information available within

the U-Boot console.

To see the various U-Boot commands available, enter a question mark and then press

return. This will show all the U-Boot console commands available (Figure 7). You may

have to scroll up and down to see them.

8

?

Figure 7: U-Boot command list

Next, enter the following command to show the U-Boot environment variables (Figure 8).

These variables are used to define the device's boot process.

printenv

Figure 8: U-Boot environment variables

9

The typical method for unlocking the console on this brand of camera is to add xmuart =

0 to the U-Boot environment variables. Why is that? Turns out this device is running a

XM530 processor, which was shown during the device's boot up in Figure 6.

The XM530 processor’s devices typically manage the UART console with xmuart setting

in the devices’ U-Boot environment variables. Much of this information is published online

and can be located with some Google searches.

To make this change to the environment variables within the U-Boot console you will need

to run the following command:

setenv xmuart 0

Once the command is run and before saving any settings to memory you will need to

validate that it was properly added. This is done by running printenv to show the U-Boot

environment variables and examining the output. So, run the following command and

examine the output for your changes:

printenv

Note: Any new environment variables added should initially show up at the bottom of the

list.

As you can see, there is no xmuart=0 environment variable added to the U-Boot

environment variables. So, it appears that this XM smart home camera system has some

extra restriction to prevent you from setting the xmuart in the U-Boot environment

variables, which should enable the UART console. Therefore, we need to go find the

various pieces of data to help us make the needed changes to gain access. We will come

back to the xmuart setting later.

10

Part 2: Extract Firmware

The first thing you need to do is get a copy of the firmware so you can find the data

needed to activate the console and login with root credentials.

● Bypass data for xmuart

● Root password for the device

To extract firmware from this camera we are going to take advantage of the fact that the

camera has an SD card slot. To do this, you will need to place an SD card in the camera's

SD card slot. Install the SD card as shown below in Figure 9.

Figure 9: Camera SD card installation

11

Insert the SD card slowly until it clicks and stays in place, as shown below in Figure 10.

Figure 10: SD card inserted in camera

In the following steps you will read the flash memory into RAM and then copy that RAM

section off to the installed SD card.

The first command you will use is sf. The sf command is used to access SPI flash. Details

of this command can be seen by using help in the U-Boot console. Run the following

command so you can see the various options available for the sf command. The output

should look like Figure 11.

help sf

Figure 11: Help SF

12

The first step you need to do, which allows you to read the flash memory, is to initialize

communication to the SPI flash so you can access it. This is done by running the

following probe command:

sf probe

This sf probe command will not return a response.

Once the probe command is finished you will run the following command to read the SPI

flash memory.

sf read 81000000 0 800000

The meaning of the command’s syntax is, starting at address 0 within the camera’s flash

memory and read hex 0x800000 bytes of data from flash into the camera’s RAM starting

at address hex 0x81000000.

sf read 81000000 0 800000

This command should return the results shown below in Figure 12.

Figure 12: Read SPI flash into RAM

You may wonder how we know how big the flash memory is and where to write it to in

memory. The two areas in which I typically gather this data are:

1) Flash memory size (8MB) comes from the data sheet for the flash memory chip.

In this case, the flash memory is a Winbond 25Q64JV. A quick look at the

datasheet shows it is 64Mb.

13

64Mb / 8 bits = 8MB

2) For the memory location, often a quick review of the system boot or review of the

U-Boot environment variables will reveal the answer. In this case, a view of the

environment variables shows several examples of firmware loads from an

alternate TFTP source being written to 0x81000000.

Your next step is to write this data out to the SD card you installed in the camera.

The following command syntax will read hex 0x4000 blocks (512 bytes per block) from

RAM memory starting at location hex 0x81000000 and writing it to the SD card starting at

memory address 0.

mmc write 81000000 0 4000

This command should return the results shown below in Figure 13.

Figure 13: Write memory to SD card

14

Part 3: Carve Firmware from SD card

In this section you will be carving the firmware from the SD card using Linux command dd

and writing it to a binary file on the laptop.

To do this you need to remove the SD card from the camera. This is easily done by slightly

pushing in until you feel a click, then releasing the pressure. The SD card should slide out

of the SD card holder on the camera. Once that is done you will need to connect an SD

card reader via USB to the laptop and install this Micro SD card into the reader. During the

IoT Village exercise we used an inexpensive Dynex SD card reader, but any SD card reader

should work fine. This is similar to the camera; just insert the micro SD card as shown in

Figure 14 until it clicks into your reader.

Figure 14: Dynex SD card reader

Next, you will need to identify what the device ID is for the SD card. To do this use the

Disks application on your Linux machine by clicking on the Disks icon (Figure 15).

Figure 15: Disks icon

15

Once the application is open, locate the correct mounted drive. In the case of our IoT

Village exercise, since we used 256MB SD cards, the drive showed up as a 251MB drive. In

this example the device was identified as /dev/sdc as shown below with the red arrow in Figure

16.

Figure 16: Disks application 251MB drive

This could typically show as either /dev/sdb or /dev/sdc or /dev/sdd — and on a newer

version of Ubuntu it could also show up as /dev/sda. Make sure you identify the correct

one or the following operation will fail.

Since the firmware image is much smaller than the full SD card size, you can speed things

up by just carving out only the firmware (8MB) we wrote to the SD card. Unlike the U-Boot

command we will be using decimal, not hexadecimal, when defining memory size during

this step.

You will need to open another Terminal window. Once the new Terminal is open, run the

following command. Make sure the if= (input file) is set to the correct device id (/dev/sdb,

/dev/sdc, or /dev/sdd) identified above.

sudo dd if=/dev/sdb of=image.bin bs=512 count=16384

The syntax of the dd command is. (if=) is input file, (of=) is output file, (bs=) is block size,

(count=) is number of blocks.

16

dd if=/dev/sdb of=image.bin bs=512 count=16384

So, the above command will carve off the first 16385 blocks of data from the SD card,

which is 8MB, each block is 512 bytes in size, and save it to a file called image.bin.

Once the command completes you should see the following response (Figure 17).

Figure 17: dd command carve out firmware from SD card

Next, run the following Linux directory list command to show that the image.bin file was

created during the above step. It should show the file to be 8388608 (8MB) in size.

ls -al

Figure 18: Directory listing

17

Part 4: Extract File Systems and Crack Root
Password

Now that you have extracted the firmware from the camera, you will need to extract the

embedded Linux file system from the binary file image.bin. Once the file system is

extracted, you will then locate the embedded Linux passwd file and use it to crack the root

password hash so you can eventually login to the camera with root privileges.

The next step in this process is to run the following binwalk command with -e switch to

extract the filesystems.

binwalk -e image.bin

Note: Binwalk is an open-source command line tool produced by RefirmLabs, which is

currently owned by Microsoft. Binwalk is used for analyzing, firmware extraction, and

extraction of associated file systems and files from binary firmware images.

Once the Binwalk is run, the output should look something like the following image

(Figure 19) and should also create a folder called _image.bin.extracted .

Figure 19: Binwalk command output

If you poke around the folder that was created (_image.bin.extracted), you will see that a

lot of files and file system data was created. Since the goal is to find the etc/passwd file

and run john-the-ripper against the passwd file to crack the root password, we can save

18

https://github.com/ReFirmLabs/binwalk
https://www.microsoft.com/en-us/security/blog/2021/06/02/microsoft-acquires-refirm-labs-to-enhance-iot-security/

some time and go straight to the correct passwd file in the folder

 _image.bin.extracted/cramfs-root/etc. So, to do this just change directory into this folder

using the following commands:

 cd _image.bin.extracted/cramfs-root/etc/

ls -al

Once you have changed into that directly and run the directory file list command you

should see the following files, including the passwd file as shown below in Figure 20.

Figure 20: _image.bin.extracted/cramfs/etc file listing

Next, run the following command to show the contents of the passwd file:

cat passwd

You should see the stored root password hash as shown below in Figure 21.

Figure 21: Contents of passwd file

You can now run john-the-ripper to crack the password hash for root, which is stored in

the file called passwd. This can be done using the following command:

19

john passwd

For the IoT Village exercises the root password was previously cracked, so john returned

“ No password hashes left to crack” as shown below in Figure 22. So, if this is your first

attempt at cracking this password it could take some time.

Figure 22: John returned results

If the password has been previously cracked it can be retrieved from the john-the-ripper

database by running the following command:

john -show passwd

This command should return all previously cracked passwords for account hashes listed

in the passwd file. In this case, root was previously cracked and the password was found

to be xmhdipc as shown below in Figure 23.

Figure 23: John show cracked passwords

20

Part 5: Identify and Modify Memory and Gain
Root Access

In the final section of this exercise, you will be identifying the offset address for the

U-Boot’s xmuart. This xmuart appears to be a filter that prevents xmuart from being set

within the U-Boot environment variables. To find this you will first examine the extracted

firmware and record the offset to the beginning of xmuart. Then you will identify the

relocation address for the beginning of the U-Boot code in RAM on the camera.

The first step in accomplishing this task is to open the image.bin file using the application

hexedit. Other hex/ascii editor programs are available and should also work fine for this

step. Run the following command to open the image.bin file using the hexedit application.

Once the image.bin file has been opened in hexedit it should look like Figure 24.

hexedit image.bin

Figure 24: Hexedit of image.bin

The layout of information displayed in the hexedit application is shown below in Figure

25.

21

https://sourceforge.net/projects/hexedit

Figure 25: Hexedit layout

Before going any further, let us take a quick look at some basic functions with hexedit.

Using the arrow keys, you should be able to move the cursor. As you move the cursor

around you should see the address location changes at the bottom of the screen.

Also, you can switch between Hex bytes within the center 4 columns and Ascii on the

right side column, and back and forth using the Tab key.

The next step is to locate the offset address of the xmuart filter. To do this, switch your

cursor so it is on the Ascii side of the screen on the right (Tab key). Once you have that

set, hold down the Control key and hit the s key (CTRL+s) at the same time. This should

put you in the Ascii search mode as shown below in Figure 26.

22

Figure 26: Hexedit Ascii search mode

Next, enter xmuart in the search window and hit enter as shown below in Figure 27.

Figure 27: xmuart search entry

This will search through the files and find the first occurrence of the word xmuart. In this

case there is only one occurrence of the word xmuart throughout the binary file. So, no

chance of getting the wrong offset by accident. Hexedit should locate xmuart and it

should look like what is shown below in Figure 28.

Figure 28: Hexedit search for xmuart

The offset number we are looking for is the hex location of the cursor, which is displayed

at the bottom of the hexedit screen and should be 0x1D7FD as shown above in Figure 28.

23

In the next part of this exercise, you need to return to the U-Boot console that we had

accessed using gtkterm. Once you have gtkterm back in the forefront of your desktop,

you will need to run the following bdinfo command within the U-Boot console. The

returned results should look like Figure 29.

bdinfo

Figure 29: U-Boot bdinfo command

Look at the list of data returned and find the relocaddr. This is the location of the running

U-Boot image and should be 0x83F97000.

Note: To give you a better understanding of the staged boot loader process, the typical

U-Boot process goes something like this: When the device powers up, ROM code executes

first (Primary Program Loader); when this ROM code runs it loads a First-Stage Bootloader

into Static RAM (SRAM). This code cannot be loaded into primary DRAM because DRAM

has not yet been initialized. This First-Stage Bootloader will initialize DRAM and then load

the Second-stage bootloader (U-Boot) into DRAM at the relocation address (relocaddr) and

execute it.

So now we need to do some math. To find the location of xmuart in running memory we

need to add the offset address from the hexedit image.bin to the relocaddr.

24

● Xmuart offset : 0x1D7FD

● Relocaddr : 0x83F97000

You can use a calculator to do this, or if desired you can do it from a Linux command line

interface (CLI) by running the following command from a Terminal command line to get

the answer shown in Figure 30.

 printf 0x%x $((0x83F97000+0x1d7fd))

Figure 30: Some Hex math

The next step is to look at U-Boot’s running memory and see if your calculations were

correct. By using the U-Boot console md command, you can read memory and see if you

are correct.

First run the following command to see the command options for md.

help md

Figure 31: help md

25

The switches .b .w .l are for defining the output size from the memory read command

md.

● .b = byte (8 bits)

● .w = word (16 bits)

● .l = long (32 bits)

Now read the memory starting from the offset address and read 32 bytes of data using

the following command. The first 6 bytes should be xmuart.

md.b 0x83fb47fd 32

You may need to expand the width of the terminal application window to be able to view

the information because it may be wrapping on the console. The data should look like

Figure 32 below.

Figure 32: md.b read 32 bytes

If that all looks good, then the next step is to alter xmuart in memory so the filter does not

work, and you will then be able to make the needed entry into U-Boot environment

variables. To do this, run the following memory write command. This command will write

hex 41, which is an “A”, to the starting memory address where xmuart is stored in running

memory, changing xmuart to Amuart.

mw.b 0x83fb47fd 41

Once you have run the above command, rerun the following memory read command and

see if the xmuart has been changed to Amuart. If successful, the results should look like

Figure 33.

26

md.b 0x83fb47fd 32

Figure 33: Memory write an "A"

If it looks correct, you should now be able to modify the environment variables and add

xmuart=0.

To make this change to the environment variables within the U-Boot console you will need

to run the following command:

setenv xmuart 0

Once the above command is run and before saving the environment variables to memory

you will need to validate that it was properly added. This is done by running printenv to

show the U-Boot environment variables and examining the output. Run the following

command and examine the output for your changes:

printenv

Note: Any new environment variables added should initially show up at the bottom of the list.

DO YOU SEE xmuart=0 ? You should, and it should look like Figure 34 below.

Figure 34: printenv results showing xmuart=0

27

If xmuart=0 is properly written into the U-Boot environment, then the next step is to save

those changes into memory. This is done by running the following command:

saveenv

When the saveenv command runs you should see output that looks like Figure 35 below.

Figure 35: saveenv

The final step — if you did everything correctly — is to reset the devices and login to the

UART console as root. You can restart the system by running the following or by powering

the camera off and back on.

reset

You should now see the system booting up past the loading kernel prompts. Once it has

booted up completely just hit enter a couple of times and you should get a login prompt.

You can now login with root using the password you gained from the john-the-ripper.

28

CONGRATS, YOU NOW HAVE ROOT ACCESS!!!

Did you enjoy this exercise? If so, check out our hands-on IoT hacking exercises from

previous DEF CON events, as well as other IoT blogs here.

About Rapid7
Rapid7 is creating a more secure digital future for all by helping organizations strengthen their security
programs in the face of accelerating digital transformation. Our portfolio of best-in-class solutions empowers
security professionals to manage risk and eliminate threats across the entire threat landscape from apps to
the cloud to traditional infrastructure to the dark web. We foster open source communities and cutting-edge
research–using these insights to optimize our products and arm the global security community with the
latest in attacker methodology. Trusted by more than 11,000 customers worldwide, our industry-leading
solutions and services help businesses stay ahead of attackers, ahead of the competition, and future-ready
for what’s next.

PRODUCTS
Cloud Security

XDR & SIEM

Threat Intelligence

Vulnerability Risk Management

Application Security

Orchestration & Automation

Managed Services

CONTACT US
rapid7.com/contact

To learn more or start a free trial, visit: https://www.rapid7.com/try/insight/

29

https://www.rapid7.com/blog/tag/iot-security-news/
https://www.rapid7.com/products/insightcloudsec/
https://www.rapid7.com/products/insightidr/
https://www.rapid7.com/products/threat-command/
https://www.rapid7.com/products/insightvm/
https://www.rapid7.com/products/insightappsec/
https://www.rapid7.com/products/insightconnect/
https://www.rapid7.com/services/managed-services/
https://www.rapid7.com/contact/
https://www.rapid7.com/trial/insight/
https://www.rapid7.com/try/insight/

