RAPIDY)

Product Security by Design
4 Steps to Building AppSec Earlier in the SDLC

Web applications were identified as
the most common attack pattern
in the 2018 Verizon Data Breach
Investigations Report, comprising
19% of all data breaches.

Software Development Lifecycle

In the case of
a breach

(0] V4
=y v
[T 4
6 .
S
>
=2
< 0 s
oo
1 Ot

Co°

4

l

Maintenance
& Support

Design Development

It's no secret that agile development teams are pushing code and releasing
features directly into production continuously—almost as fast as ideas are
conceived. But with web applications representing the most common vector
for data breaches’, the question of how security testing can keep pace with
these software builds remains unanswered for many teams. This is where
dynamic application security testing, or DAST, comes in.

DAST can enable security and development teams to work together to
balance speed with acceptable risk. In fact, leveraging a DAST tool can speed

up development time by spotting and
addressing vulnerabilities (or bugs) while
the product is being built—a concept
known as shifting left. By prioritizing
security earlier in the software development
lifecycle, you can proactively address many
of the potential downstream consequences
of exposing application vulnerabilities to
the wild. This approach helps prevent you
and your organization from rolling back
features or incurring immeasurable losses
in the wake of a breach.

12018 Verizon Data Breach Investigations Report

092818




4 STEPS TO SHIFTING LEFT IN YOUR ORGANIZATION

&% Build Cross-Functional Partnerships

To successfully shift your application security efforts left (or earlier)
in the development process, you first need buy-in from all of the
stakeholders involved. Those who lead security, development,

and operations teams must agree on both a shared goal to better
secure what is being built, and the new tools or processes that
will be introduced for that purpose. Addressing these potential
sources of friction early on allows all teams to feel invested in
process improvements and lend cross-functional support.

@ Embed Security with Existing Tools

Next, introduce tools that will allow you to automate more
tedious aspects of security, embed into development’s existing
workflows, and play nicely with development’s current tools. This
way, security is no longer a blocker at the end of the process, but
rather folds in as a natural part of the SDLC process.

&?zé Streamline Processes Through Orchestration

Further pinpoint tools that are purpose-built to integrate with
common continuous integration/continuous delivery (CI/CD) and
ticketing solutions, so that vulnerabilities are detected, reported,
and prioritized all in the same workflow (one that development
knows well). When done right, security can run parallel to other
dev work in the background—with no impact on performance or
speed.

¢~ Get Feedback in Real Time

Consider tools that can put in place quality gates, or policies
that halt builds or raise alerts when an agreed upon threshold
of vulnerabilities has been detected by a DAST scan. Why?
Development not only gets an early warning of the bug, but also
the motivation to fix the issue so that integration and testing
processes proceed error-free.

It's simple: Shifting left and catching security issues earlier in the
development cycle makes them far cheaper to fix and downtime a
thing of the past. When it comes time, you can be confident that you're
deploying apps and not the risks we've come to associate with them.

Take the next step with
your AppSec program.

Learn more about how we can help:
www.rapid7.com/shifting-left

© 2018 Rapid7


https://www.rapid7.com/shifting-left

