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Abstract—Dynamic application security testing (DAST) scan-
ning consists of automated requests to web applications with
the goal of uncovering exploitable vulnerabilities. While the
legitimate use of scanners aids development teams in improving
security postures, they are often used by malicious actors in
a brute-force manner for attack reconnaissance with a view
to eventual compromise. Despite this threat from misuse of
DAST to web applications and the critical data they handle,
security mechanisms are lacking, with threshold-based classifiers
suffering from being overly sensitive, causing excessive false
positives. To tackle the problem, this paper demonstrates the
first application of machine learning to specifically detect DAST
attacks that augments a next-generation web application firewall
implementing OWASP’s AppSensor framework. Avoiding the
brittle threshold approach and using tumbling windows of time
to generate aggregated event features from source IPs, twelve
random forest models are trained on millions of real-world events.
Results show an optimal window size of 60 seconds achieves an
F1 score of 0.94 and a miss rate of 6% on average across three
production-grade web applications.

Index Terms—dynamic application security testing, vulnerabil-
ity scanning, random forest, machine learning, web application
firewall, web application security

I. INTRODUCTION

The growth of the cloud has caused the ubiquity of web
applications offering rich platform-agnostic experiences across
the likes of webmail, e-commerce, banking and social media.
The volume of apps and society’s dependency on them creates
a major incentive for cybercriminals with a significant increase
in web application attacks [1]. The OWASP Top Ten [2]
is a highly valuable consensus list of the most critical web
application vulnerabilities, such as broken access control and
injections. In practice, however, protecting application servers
is inherently difficult since they have to serve legitimate re-
quests whilst simultaneously denying access to malicious ones.
The distinction between a malicious and legitimate request can
be hard to make, and the cost of blocking legitimate traffic
can be high. With web attacks being the most common form
of compromise [3], there is a pressing need for defensive
capabilities to protect businesses, consumers and governments.

Dynamic application security testing (DAST) gathers infor-
mation on a web app’s potential vulnerabilities by sending
a variety of HTTP requests in a brute-force manner through
automated pen-testing techniques, which can then be remedi-
ated in the software development lifecycle. There is a valid

global commercial industry for these tools, plus some are
freely open-sourced [4]–[6]. However, DAST scanners are also
used maliciously by both skilled and unskilled attackers. The
latter, ”script kiddies”, may use scanners before selling their
findings to a more proficient actor [7]. Hence the failure to
detect and block DAST activity could expose an organisation
to more severe abuse by sophisticated adversaries. Since the
adversary’s attack capacity is limited only by the available
bandwidth and CPU, defensive systems need to prevent DAST
scanning attacks with minimal manual intervention. In a pro-
duction environment with multiple apps and millions of events,
it is not feasible to check each attack alert by hand. With
traditional detectors based on statistical thresholds suffering
over-optimisation and excess false positives, it is essential to
develop new protection mechanisms against malicious DAST
activity.

An effective existing approach to securing web apps more
generally is to run separate, dedicated security solutions in a
layered fashion to filter incoming traffic. One such protection
mechanism is a web application firewall (WAF). A WAF
operates in the application layer and protects the web app by
analyzing each HTTP request and then filtering, monitoring
and blocking malicious traffic. WAFs have evolved into next-
generation WAFs (NGWAFs) to include sophisticated event
analysis engines that detect and prevent other malicious at-
tacks like credential stuffing and distributed denial of service
(DDoS). This motivates us to propose an automated machine
learning (ML) classifier to augment an NGWAF and block
actors performing DAST scanning attacks whilst avoiding the
arguably arbitrary adjustments of threshold-based methods.

Our contributions are:
• A method of pre-processing millions of AppSensor events

in a temporal fashion using a tumbling window approach
to create a proprietary dataset.

• A random forest ML model with an optimal window size
w = 60 seconds achieving an F1 score of 0.94 and a miss
rate of 6% in detecting DAST attacks on average across
three production-grade web apps.

The rest of this paper is as follows: Section II contains
related work, Section III presents the methodology and Section
IV the experimental details. Section V contains results and
lastly Section VI outlines conclusions and future work.
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II. RELATED WORK

A. Traditional Threshold-based Detection Approaches

Previous threshold-based models for detecting malicious
activity were built by modelling client behaviour using statis-
tical models, heuristics and rules for anomaly detection [8]–
[11]. For example, a model classifying login attacks could
incorporate set thresholds for the hourly number of attempts
at inputting credentials and the number of IP addresses in use
from an actor. Thresholds could be dynamically generated too,
such as a moving average of the number of IPs per user.

Seminal work from [12] presented a correlation between
anomalous activity and misuse, using statistical techniques to
describe and evaluate user behaviour against both fixed and
dynamic measures of normality. This highlighted the impor-
tance of wider network security, encouraging other researchers
to investigate the topic further. [13] proposed an intrusion de-
tection system (IDS) that detected attacks against web servers
and web apps by analyzing the statistical characteristics of
HTTP traffic and parameters contained in queries between
clients and servers. [8] applied Markov chains to create an
intrusion detection mechanism for the web, with [9] presenting
an anomaly detection model for HTTP traffic to and from
a web application, where the app’s normal behaviour was
described using statistical properties.

These threshold-based systems may be straightforward to
implement however actually choosing appropriate thresholds
is often not clear, as they will almost certainly differ from one
web app to the next. Moreover, there are challenging cases
requiring multivariate thresholds. For example, if a username
is utilised across different countries, but with the same browser
fingerprint, one may draw the conclusion a VPN has been
employed and the activity is not suspicious. However to remain
effective the threshold-based system then additionally needs to
take the number of unique browser fingerprints into account.
So it can be seen as complexity increases, heuristics become
harder to implement and more manual interventions may be
needed.

The selection of an appropriate threshold is further in-
fluenced by resultant noise. If a threshold is too low, the
detection rate is increased at the cost of time-consuming false
positives, whilst setting a threshold too high risks missing
some malicious activity altogether. These factors combined
make it difficult for both individual users and WAF/NGWAF
vendors to create rules and thresholds that generalize well
enough. By contrast, our proposed ML classifier does not use
thresholds, but rather temporal features indicative of DAST
scanning attacks based on tumbling time windows. Moreover,
there have been numerous works on detection attacks at the
network layer, but work related specifically to the application
layer is limited and not as mature [14].

B. Machine Learning Detection approaches

The popularisation of machine learning techniques led
researchers to create unsupervised anomaly-based network
intrusion detection models [15]–[18]. [15] used self-taught

learning, a deep learning-based technique, on NSL-KDD [19],
a dataset suggested to solve some of the inherent problems of
the KDD’99 [20] dataset. [16] proposed a non-symmetric deep
autoencoder (NDAE) for unsupervised feature learning and
also proposed a model constructed using stacked NDAEs that
was evaluated using the benchmark KDD’99 and NSL-KDD
datasets. [17] performed a study on the effectiveness of various
ML methods in detecting future cyberattacks, with experi-
ments performed using both classic ML algorithms and neural
networks, again using benchmark datasets such as KDD’99
and NSL-KDD. [21] sought to evaluate the feasibility of
unsupervised and semi-supervised approaches for web attack
detection [21], [22]. The data used was based on a monitoring
tool characterizing the behaviour of the web application by
extracting traces of program execution from running software.
The monitoring model was created by using supervised train-
ing with the test suites created for an application as part of
the software development process. [23] proposed using an ML
approach to model the normal behaviour of applications and
to detect cyberattacks, however unfortunately it was not clear
to what degree ML was leveraged in the solution, with regular
expressions and dynamic programming being used.

We feel leveraging ML in an enterprise application security
setting is under-researched with plenty of scope. To the best of
our knowledge, there is no work directly addressing the detec-
tion of DAST vulnerability scanning attacks, likely due to the
absence of relevant web application datasets and the expensive
domain knowledge required. This creates an opportunity for
us to contribute to the space by taking advantage of a large,
real-world dataset to address the research gap in investigating
the specific detection of DAST attacks at the application layer
using ML.

III. METHODOLOGY

This work presents an ML classifier to detect malicious
DAST activity that augments an NGWAF as part of a wider
end-to-end system. In practice, source IPs can then be blocked
to prevent further scanning. IP activity is classified as either
positive, deemed to originate from a DAST scanner, or neg-
ative, where it does not come from a scanner. The number
of false positive detections should be minimised to prevent
legitimate requests from being refused. This section discusses
curation of raw event data, an overview of the NGWAF plus
the concept of tumbling windows, data analysis and feature
engineering. Further, to define the research parameters the
following assumptions are made:

• the adversary is an unskilled individual who lacks the
ability to write their own custom payloads; hence they
choose to utilise a DAST scanner maliciously.

• the attacks are not distributed and stem from the same
source IP.

• the DAST scanner is running the default off-the-shelf
configurations and is not using any custom APIs, nor is
it loaded with any extensions.
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Fig. 1: NGWAF overview

Feature Description
ts event timestamp
ip source IP
response-code e.g. 200, 404, etc
payload e.g. OR 1=1
method e.g. POST, GET, etc
headers headers in the request
parameter parameter set in the url
sensor sensor which was triggered
pattern pattern for the sensor triggered
location body, cookie, header or query
uri e.g. https://www.space-travel.com/api/saturn/

TABLE I: AppSensor event features

A. Data Curation

The AppSensor framework is an industry standard from
OWASP [24] for implementing application layer intrusion
detection and automated response. For the avoidance of doubt,
the AppSensor framework is defensive in aiming to detect
malicious actors, not offensive with regards to discovering
vulnerabilities in a web app. The framework is used in the
NGWAF via a series of detection points, or sensors, triggered
by suspicious activity. For example, attackers can send an
SQLi payload, try to circumnavigate authentication, malform
requests with odd encodings or perform credential stuffing,
amongst others. The nature of these activities triggers a regular
expression pattern within the relevant sensor which creates a
timestamped AppSensor event. Table I lists the features of an
AppSensor event. There can be millions of such events in a
24-hour period, forming a reliable source of timely real-world
raw data to be leveraged.

Per Figure 1, the NGWAF contains a monitoring agent,
an event analysis engine and an application monitoring user
interface for an overview of threats. After external stimuli in
step 1, steps 2-5 depict the process of an event being logged,
processed and finally a new security policy emitted. The event
analysis engine consumes events generated by the agent and
uses policy scripts to automate actions in response to the
observed signals. The agent is instrumented into an application
or its run-time environment and monitors, detects and prevents
attacks in real time.

The policy scripts are designed by administrators, based on
information in the application monitoring interface. Dependent
on the policy, the engine decides how communications should
be handled including allowing, reporting or blocking an IP. In
the current configuration, IPs executing DAST activity can be
blocked after the fact by the administrator via reviewing the

Sensor Description
cmdi command injection
excsrf cross-site and anti-request forgery tokens
exsql SQL exceptions
fpt file path traversal
null embedding null code
reqsz unusual request size
retr line-break character
rspsz unusual response size
s4xx all response codes 4xx
s5xx all response codes 5xx
sqli SQL injection
uaempty user agent empty
xss cross-site scripting
xxe XML external entity processing

TABLE II: Sensors implemented in the NGWAF

user interface. However, with the potential volume of events,
this is time-consuming and expensive, causing cognitive over-
load and possible alert fatigue.

In line with the AppSensor framework, each category of
attack has multiple detection points in the NGWAF acting as
sensors, listed in Table II. The NGWAF uses deep packet
inspection (DPI) to implement the AppSensor framework,
collecting information about activity originating in the appli-
cation layer. DPI enables the request and response filtering
capabilities of suspicious activity in web apps by inspecting
the strings present in HTTP requests and matching their
patterns against a wide range of attacks.

When a sensor is triggered, an AppSensor event is generated
and emitted into the event stream, referred to as the AppSensor
stream. The streams of our three busiest production web apps
were collected and persisted within a 48-hour time period,
detailed further in Section IV-A.
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window size w

events

time
window 1 window 2 ... window n

Fig. 2: Dividing time into tumbling windows

B. Tumbling Windows

DAST scanners operate in a conspicuously overt brute-
force manner. Some of the most distinct patterns are the
request rate and the diversity of requests from a source
IP. To take advantage of this and track the rate at which
requests are performed, we need to perform aggregation of
events over time, forming tumbling windows. By first grouping
events together originating from the same source IP address,
numerical aggregates can then be created for many features
such as intensity of requests, diversity of headers, distribution
of response codes and diversity of insertion points.

Per Figure 2, a source IP’s events are grouped together
by bucketing them into tumbling windows of time that do
not overlap. For each IP, features are calculated within each
window across the IP’s events to form the feature vectors
used in the training process. These resulting feature vectors
are the individual samples that make up each app’s dataset,
explained further in Sections III-E and IV-A. The size of the
tumbling window impacts storage requirements, processing
time, and compute costs in production. Therefore striking a
balance between these factors and model performance should
be considered in a real-world environment. In this study, a
window size w ∈ {1, 30, 60, 300}, measured in seconds, is
used to create different datasets to be compared and evaluated.

C. Data Labelling

The AppSensor events consist of all matches against the
attack sensors and patterns, which are then aggregated into
tumbling windows per source IP. However each window
needs labelled as to whether it belongs to a scanner or not.
This is highly challenging to do by hand given the volume
of windows. Therefore the method of labelling the data is
based on analysis and comparison between generated data and
production data.

We generate data by deploying WebGoat [25], a deliber-
ately insecure web app to demonstrate common server-side
application flaws with many vulnerabilities which can be
exploited, thus providing the coverage that is needed [2], [25].
WebGoat is then scanned with two DAST tools - OWASP
Zed Attack Proxy [6] and Burp Scanner by PortSwigger [5].
Both of these widely used scanners are included in the pen-
testing platform Kali Linux, an open-source distro specifically
for pen-testing and security research [4]. The data analysis
technique employed is EDA [26], used to understand the data,
its shape, the types of features and the relationship and patterns
between them. The results are then used to verify intuitions
about the characteristics of scanning.

The labelling of a source IP’s aggregated events within a
given window is determined by combining insights gained
from the data analysis with manual classification by a human
expert. This allows the creation of a set of rules to label activity
as originating from a DAST scanner or not. The WebGoat data
was manually labelled by a human expert who had access to a
dashboard containing the statistics for each source IP session,
for example the frequency distribution of sensor activation, and
rates of requests being made, plus the label predicted by the
ruleset. The expert corrected the labels by hand where needed
and the generalised rules were then used to label real-world
production data gathered from the AppSensor stream.

D. Data Analysis

Salient input features to the ML model are key in allowing
the classifier to detect DAST scanning activity. Given we are
adopting a tumbling window approach that aggregates features,
before deciding how to engineer these features it is useful
to analyse the data in combination with our DAST domain
knowledge. Note, where relevant in this subsection, the figures
use logarithmic axes and are for a single app. We find similar
trends across the other apps in our dataset also, though their
figures are not included due to space restrictions.

1) Number of unique URIs per source IP: Figure 3 shows
the empirical cumulative distribution function (eCDF) for the
number of distinct URIs requested per IP. Scanning attacks
with a single distinct URI requested can be attributed to single-
page scans. In this case, the URI is constant, with the payload
changing for each request made. The large number of distinct
URIs for non-scanning attacks is due to web crawlers tending
to trigger the s4xx sensor rather than containing a malicious
payload. With a clear difference between the attack and non-
attack classes, it is logical to keep count of the distinct i.e.
unique URIs within an aggregated tumbling window.

2) Number of payloads per session: Figure 4 displays the
eCDF for the number of distinct payloads for each session.
The large proportion of attack sessions that only have a small
number of requests can be attributed to a number of requests
being made at a very high pace within a very short time. Again
since the difference between the attack and non-attack classes
is clear, a count of the unique payloads, and total payloads,
will be calculated within a tumbling window.

3) Distribution of HTTP methods across events: An in-
teresting observation can be made in Figure 5 where only
the attack class has any matches for the HTTP methods
PROPFIND and TRACK. These two methods can be abused
for injection and extraction of sensitive information [27], [28].
Given the differences in the plot, we decide a count of each
HTTP method in a tumbling window may be a useful feature.

4) Event intensity per class: Figure 6 is a scatter plot to
show the joint distributions of intensity in events per second
and duration of each session. The longest and most intense
sessions are in the top right corner, where the red points
for the DAST scanner attack class are concentrated. There
are no points in the bottom left corner since duration and
intensity have a negative linear relationship. The observation
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Feature Description
timestamp event timestamp
ip source IP
payload extracted payload
method extracted method
headers.known extracted known headers
headers.unknown extracted unknown headers
sensor extracted sensor
pattern extracted pattern
location extracted location
uri extracted URI

TABLE III: Makeup of a single event

Fig. 3: eCDF for distinct URIs for app-1

Fig. 4: eCDF for distinct payloads for app-1

can be made DAST attacks are longer in duration and have
a greater intensity, justifying more widely the use of an
aggregated time window approach. We assert a DAST attack
will generate many more events than non-DAST activity, and
thus aggregated features may be more discriminative.

E. Feature Engineering

Each sample in the dataset is an aggregate representation
per source IP of individual events within a tumbling window,
labelled as either a DAST attack or non-DAST activity. First,
a representation is required for a single event, and then a
second representation is needed as to how those single events
for a given source IP will be aggregated. Table III lists the
extracted AppSensor features comprising a single event, with
Table IV describing the aggregations to produce the overall
feature vector for all events from a given source IP in a
window. Note the source IP itself is not part of the final feature
vector; it is only used as an identifier.

Numerical features are created using standard summation
or counts with min-max scaling [29], though the text features
require a different approach. Intuitively, if we can capture a

Fig. 5: HTTP method distribution for app-1

Fig. 6: Intensity and duration distributions for app-1

representative set of text features from the training data for
DAST attacks and use them as part of the ML training process,
the discriminative power in testing may be strengthened.
For example, a DAST scanner generates a great number of
payloads unique to itself which may aid identification of the
scanning attack.

For the corpora of the payload, headers.known,
headers.unknown and URI text features, the TF-IDF score
[30], [31] was calculated to produce a ranking of importance
within the training data. It was capped at 100 terms, meaning
it builds a vocabulary only containing the 100 most important
terms ordered by term frequency across a given corpus. The
intent is to highlight unique strings in these features from
DAST scanners while ignoring the commonalities. Within a
given window, for each of the payload, headers.known,
headers.unknown and URI features, a count of these top
100 terms can then be calculated.

5
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Feature Aggregation Description
ip N/A source IP whose events are being aggregated, only used as an identifier, not in model training
payload value counts for each of the top 100 training set payloads, a count of their occurrences in the window
payload nunique # of unique payloads in the window
method value counts for each method, a count of their occurrences in the window
sensor value counts for each sensor, a count of how often each is triggered in the window
pattern value counts for each pattern, a count of how often each is triggered in the window
location value counts for each location, a count of their occurrences in the window
headers count total # of headers in the window
headers.known count # of known headers in the window
headers.known nunique # of unique known headers in the window
headers.known value counts for each of the top 100 training set known headers, a count of their occurrences in the window
headers.unknown count # of unknown headers in the window
headers.unknown nunique # of unique unknown headers in the window
headers.unknown value counts for each of the top 100 training set unknown headers, a count of their occurrences in the window
uri value counts for each of the top 100 training set URIs, a count of their occurrences in the window
uri nunique # of unique URIs in the window
overall N/A final feature vector of 469 elements, excluding source IP

TABLE IV: Makeup of an aggregated window of events per source IP

w App # train DAST samples # train non-DAST samples # test DAST samples # test non-DAST samples
app-1 129,941 129,941 1,265,655 58,605

1 app-2 183,333 183,333 409,687 78,334
app-3 7,704 7,704 3,287 3,303
app-1 105,458 105,458 1,144,586 44,805

30 app-2 135,662 135,662 244,617 58,200
app-3 7,714 7,714 4,177 3,303
app-1 93,532 93,532 1,139,166 39,810

60 app-2 133,283 133,283 230,000 57,042
app-3 7,707 7,707 4,187 3,303
app-1 76,583 76,583 1,138,835 33,348

300 app-2 128,479 128,479 155,857 55,110
app-3 7,704 7,704 3,287 3,303

TABLE V: Train and test splits per window size w across each app

F. Random Forest ML Model

The random forest algorithm is used to train each model,
inspired by its use outside web application security in areas
such as network IDS [32]–[34]. One model is trained per app
with a varying window size w. In testing a model makes a
binary prediction as to whether the aggregated window activity
of a source IP is a DAST attack or not.

IV. EXPERIMENTAL DETAILS

A. Dataset

The data used in our experiments is collected from the three
busiest real-world web applications protected by the NGWAF
over a 48-hour period. This raw data covers the range of
sensors resulting in a high quality, high volume dataset where
app-1 had 49,033,476 events, app-2 had 27,328,196 events
and app-3 had 18,113,350 events. Figure 7 shows an example
distribution for app-1, with distinctly taller bars representing
attacks much more common than the rest, like SQLi and XSS.
Note the y-axis is logarithmic meaning the tallest bars are
several orders of magnitude greater than others, indicating that
as expected considerably more DAST scanning attacks than
non-scanning attacks take place in the wild.

The three apps’ events are consumed from the AppSensor
stream simultaneously, meaning the same version of attack
detection patterns is used, ensuring consistency in what is
considered an attack. For confidentiality reasons, we cannot
reveal details of the functionality or nature of the apps.

Fig. 7: Event distribution per sensor for app-1

Occasionally duplicate events can be captured in the stream,
so the data is also deduplicated. We gather our own proprietary
data to give us more confidence in any eventual outcomes, as
previous datasets are not AppSensor-orientated.

B. Dataset Splits

Table V shows the number of DAST and non-DAST sam-
ples per app in training and testing. Recall each sample is an
aggregation of a given source IP’s activity within a tumbling
window, labelled as either a DAST scanning attack or non-
DAST activity. To ensure a balanced number of each class
per training split, the DAST scan samples are subsampled.
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The data for each app was first sorted by timestamp and
then split into a training split and a test split, after which
the tumbling windows were generated. The training split
includes all the data from the first 24-hour collection period,
and the testing split all the data from the second 24-hour
collection period. This ensures a challenging scenario where
a model can be trained using the first 24-hour period and
tested on the future second 24-hour period to mirror a real-
world deployment. Moreover, depending on the configuration,
a vulnerability scan attack can span anything from minutes
to an hour or two. Randomly sampling events may create a
train and test split containing the same sessions, risking the
possibility of a scan being included in both the training and
testing splits, leading to artificially inflated performance. After
the event data is split, the steps outlined in Section III-E are
executed to generate each source IP’s aggregations within a
tumbling window across each w ∈ {1, 30, 60, 300}.

C. Classification Metrics

The metrics precision, recall, F1 and miss rate are calcu-
lated, with a focus on the F1 and miss rate, which is the
percentage of scanning attack samples missed and mistakenly
predicted as non-scanning. The positive case is a DAST
scanning attack and the negative case is non-DAST activity.
Formally:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 · Precision ·Recall

Precision+Recall
(3)

Miss rate = 100 · (1−Recall) (4)

The receiver operating characteristic (ROC) curve is also
measured for the classification at various probability thresh-
olds. The ROC is a probability curve where the area under the
curve (AUC) represents the degree of separability to describe
how well the model distinguishes between DAST activity and
non-DAST activity.

D. Random Forest Hyperparameters

The random forest model parameters are the defaults per
[35]. Additionally, the following software was used: Jupyter,
Python 3.9, scikit-learn, pandas [36] and numpy [37].

V. RESULTS

For each window size w ∈ {1, 30, 60, 300}, three models
were evaluated, one per app, totalling twelve models. Each
model was trained with its training data split and tested
with its corresponding test split, listed previously in Table
V. Having the train and test data fixed as two separate 24-
hour periods means any change in model performance can
be attributed to varying w. Results in Table VI show strong
performance across each window size in the first instance.
Specifically, w = 60 performs best in detecting DAST activity
with an F1 score of 0.94 and a miss rate of 6% on average

w App Precision Recall F1 Miss rate
app-1 0.97 0.95 0.96 5%

1 app-2 0.89 0.82 0.84 18%
app-3 0.96 0.96 0.96 4%
Average 0.94 0.91 0.92 9%
app-1 0.98 0.96 0.97 4%

30 app-2 0.92 0.89 0.89 11%
app-3 0.96 0.96 0.96 4%
Average 0.95 0.94 0.94 6.33%
app-1 0.98 0.97 0.97 3%

60 app-2 0.92 0.89 0.90 11%
app-3 0.96 0.96 0.96 4%
Average 0.95 0.94 0.94 6%
app-1 0.97 0.85 0.90 15%

300 app-2 0.90 0.86 0.87 14%
app-3 0.96 0.96 0.96 4%
Average 0.94 0.89 0.91 11%

TABLE VI: Performance metrics per w across each app

Fig. 8: ROC curve of the model for app-1 with w = 60

across all three apps. In practice, w = 30 might also be
an option in a production setting, though it is recognised
w could be varied further, perhaps in 5-second increments,
which unfortunately was not possible for this work due to
time restrictions. Notwithstanding more exhaustive window
tuning, the results are still attractive and it could be said even
the smallest window choice of w = 1 may be effective in a
resource-constrained environment.

Performance can be further demonstrated by the ROC curve,
for example from the model for app-1 with w = 60 in
Figure 8. It plots the true positive rate, i.e. the proportion
of correctly predicted DAST attacks, against the false positive
rate, i.e. the proportion of DAST attack activity incorrectly
predicted as non-DAST. The optimal point is the top left
corner with a true positive rate of 1 and a false positive rate of
0. ROC curve steepness is important in maximising the true
positive rate while minimizing the false positive rate, and a
high AUC implies the model is performant predicting positive
and negative samples alike, with a model having an AUC
near 1 reaching a maximized measure of separability as the
curve approaches the top left corner. Indeed, we can observe in
Figure 8 for app-1 the AUC = 0.98 and the curve is almost
optimal.

Prior analysis in Section III-D showed DAST attacks last
longer, with greater intensity, distinct payloads and URIs,
producing a vast number of events. We assert encoding this
knowledge via careful feature engineering contributed to the
outcome. In practice, an extra step could be added to the
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NGWAF to automatically block source IPs of DAST activity
without manual intervention, making our proposed end-to-end
system appealing in a production setting.

Lastly, we recognise models need updated over time. This
is a relatively manageable task of collecting fresh data and
retraining at a given cadence, such as once a week. Nev-
ertheless, for these selected three apps our use of a high-
quality proprietary dataset gives us strong confidence in the
ML model’s ability to detect DAST scanning attacks from
unskilled individuals operating from a single IP.

VI. CONCLUSIONS AND FUTURE WORK

A random forest ML model detecting DAST vulnerability
scanning attacks that augments an existing NGWAF is pre-
sented. This solution can form part of an end-to-end streaming
data pipeline, classifying DAST activity which can be blocked.
Leveraging a large real-world dataset of millions of events,
results show an optimal window size of 60 seconds achieves
an F1 score of 0.94 and a low miss rate of 6% on average
across three selected enterprise-grade production apps. Future
work may consider creating a suite of ML models, one per
sensor, and explore sequence-orientated deep learning like
transformers, recurrent networks and convolutions.
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