RAPID)) WHITEPAPER

Cloud & Kubernetes -
Removing the Security
Blind Spots

Best Practices for Visibility, Control, Security,
and Compliance of Kubernetes Deployments

TABLE OF CONTENTS

Executive Summary
The Need for Full Cloud Stack Visibility and Control

The Rise of Kubernetes

Kubernetes Security and Compliance Leaves Blind Spots
Kubernetes Orchestration Is Great Until It’'s Not

A Need to Fly Both Planes: Control and Data

The Need for Full Cloud Stack Posture Management and

Workload Protection

Three Steps to Kubernetes Deployment Security
and Compliance

Instrumenting and Hardening the Kubernetes Environment
Implementing Deep Visibility and Control for Kubernetes
Detecting Anomalous Kubernetes Behaviors and Threat Actors

Detection without Response Is a Non-Starter

Holistic Kubernetes Security and Posture Management

Configuration Guardrails
Cloud IAM
Cloud laC

Cloud Compliance

Conclusion

N N o o1 o

10
10

10

11
11
11
11

12

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

2

Executive Summary

Cloud Security Posture Management (CSPM) and Cloud Workload Protection Platforms (CWPP) are foundations
for good cloud security, but with more and more organizations adopting microservices and Kubernetes
orchestration using cloud and hybrid cloud infrastructure, they are unwittingly expanding their significant attack
surface. As engineering teams migrate existing applications to the cloud or build new cloud-native applications,
security teams face the considerable task of protecting these deployments in a relatively new, foreign, and often
hostile environment. At the heart of these application deployments is Kubernetes.

The percentage of organizations using Kubernetes skyrocketed to nearly 50% in 2020, up almost two-fold
since 2018. As a new application delivery vehicle, designed from the ground up to be cloud native, Kubernetes
requires a new security approach that builds on existing cloud infrastructure security practices, yet respects the
sheer power, flexibility, and ease of deployment that Kubernetes offers.

Kubernetes is a cloud unto itself, requiring an integrated and holistic security implementation. Cloud security
solutions, such as CSPM and CWPPs, provide aspects of Kubernetes coverage. However, adoption of these
solutions is still early. Without an understanding of why Kubernetes requires a new security approach, there is
significant risk of leaving blind spots that obscure visibility and create control gaps.

If security teams do not prioritize and close these gaps, the entire cloud application stack, and the organization
as a whole, are at risk. However, if security teams implement the necessary hardening, visibility tools, and
guardrails to eliminate the blind spots, they will not only manage these risks but also fuel innovation by
empowering the flexibility, dynamism, and speed of Kubernetes.

In this paper, we explore:

« Why Kubernetes security can leave blind spots and why eliminating them is not as simple as implementing

solutions that have become the standard for cloud security - CSPM and CWPP.

e Why deep visibility and control are the linchpins of protecting modern cloud infrastructure, inclusive of
Kubernetes.

« Why comprehensive Kubernetes security requires holistic security and posture management for the entire

cloud stack, including configuration management, identity and access management (IAM), infrastructure as

code (laC), and compliance management.

This is the new imperative: cloud security teams must empower Kubernetes.

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

3

The Need for Full Cloud Stack Visibility
and Control

The Rise of Kubernetes

Security teams face the considerable task of managing the confidentiality, integrity, availability, and compliance
of cloud application deployments. Their DevOps teams are pushing applications to the cloud with gusto,
leveraging a host of server-based and serverless cloud services including infrastructure, containers, platforms,
software, and functions as a service (laaS, Caa$, PaaS, SaaS, and FaaS).

At the heart of the cloud application stack is the workload orchestration layer, typically running Kubernetes.
Kubernetes orchestrates container deployments, though, increasingly, it is orchestrating workloads on top of
public cloud infrastructure.

Kubernetes use has skyrocketed significantly, with nearly half of all organizations using it in 2020, up from
27% in 2018. Why? Enterprises report clear benefits from adopting Kubernetes, most notably better resource
utilization, shortened software development cycles, containerizing monolithic applications, and enabling a move
to the cloud, according to VMware’s “State of Kubernetes 2020 Report.”! In other words, Kubernetes drives
innovation.

This rapid adoption places Kubernetes front and center on the security team’s radar. The team’s challenge is
that Kubernetes plays a central role in the cloud application stack. Its inherent characteristics of dynamism and
complexity pose a significant and potentially catastrophic risk to the organization. If security teams cannot
manage Kubernetes' security and compliance posture and ensure the security of the workloads it orchestrates,
the entire cloud application stack will be at high risk. If teams can mitigate this risk, they will empower
Kubernetes and the innovation it drives.

Kubernetes Security and Compliance Leaves Blind Spots

Teams looking for solutions to protect cloud applications have many offerings to choose from (e.g., Cloud
Access Security Brokers (CASB), Cloud Security Posture Management (CSPM), Cloud Workload Protection
Platforms (CWPP), and Cloud Infrastructure Entitlement Management CIEM). The most mature of these are
CSPM and CWPP. Cloud workload protection refers to the unique requirements of safeguarding workloads
running in a cloud, multi-cloud, or hybrid cloud architecture. A CSPM solution protects the infrastructure on
which the workloads run.

! https://k8s.vmware.com/state-of-kubernetes-2020/

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

Kubernetes can be thought of as a cloud unto itself, given its on-demand, declarative nature, robust scalability,
and platform independence. Therefore, the security and compliance of a Kubernetes deployment require aspects
of multiple cloud security offerings. But, as with most security controls, just slapping together a few different
solutions (e.g., CSPM and CWPP) does not guarantee Kubernetes security. Worse, this approach could lead to a
false sense of security due to significant potential gaps in Kubernetes security and compliance coverage.

The best way for security teams to protect Kubernetes is to take a step back from the CSPM vs. CWPP vs. CXYZ
decision. It is best to first focus on Kubernetes’ central role in cloud application workload deployment and its
relationship to the underlying cloud infrastructure. Without this understanding, organizations are at risk of
developing significant blind spots due to missing coverage and control.

Kubernetes Orchestration Is Great Until It’s Not

Applications are workloads that run on cloud infrastructure (e.g., VMs and storage repositories), containers, or
serverless compute services — including functions as a service (FaaS) — and containers as a service (CaaS). For a
workload running on a container, Kubernetes is the orchestrator, decoupling the workload from the underlying
container infrastructure.

As an orchestration service, Kubernetes is declarative, continually managing any deltas between the desired
state (e.g., six active containers) and the actual state (e.g., five containers responding). When a container hangs
or fails, Kubernetes automatically spins up another container to close the gap between the real and desired

states.

This agility and automation are a boon for application deployment. However, if not instrumented correctly,
Kubernetes dynamics is a nightmare for the security team. For example, that failed container might be an
in-scope (i.e., Payment Card Industry (PCl)-compliant) workload in a cardholder data environment (CDE). What if
Kubernetes automatically restarts that workload on a container outside the CDE? Considering a cloud application
may consist of thousands of containers, and the average life of a container is less than five minutes, the chances
of this happening are high.2

When the security team does not have complete visibility into and control over the Kubernetes orchestration
layer, the dynamics of a container environment (e.g., the wayward workload) significantly increases the

organization's cloud application risk.
So, what level of visibility and control are necessary to make sure Kubernetes orchestration falls within the

boundaries of good security and compliance practices? Answering this question requires diving a bit deeper into

Kubernetes.

2 https://www.zdnet.com/article/technology-containers-short-lifespans-are-getting-even-shorter/

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

5

A Need to Fly Both Planes: Control and Data

In cloud infrastructure, each cloud service has a control plane and a data plane. The control plane governs the
infrastructure and the data plane supports the workloads. As shown in Figure 1, a Kubernetes cluster also
contains both a control plane (e.g., APl server, controller manager, etcd) and a data plane (e.g., kubelet,
kube-proxy).

And here lies the reason why Kubernetes security can result in blind spots. Many security teams are trying to
protect Kubernetes deployments via one plane or the other. For example, some rely on the Kubernetes cluster
metadata to monitor the application but have little insight into what is happening to the workload running on a
container, inside a pod, inside the cluster. Others are tracking the data plane and missing compromise of the
Kubernetes Master, unauthorized access, modification of etcd, or other significant control plane violations.

Securing a Kubernetes deployment requires deep visibility into and control over both the Kubernetes data and
control planes.

API server

Cloud

provider Cloud controller
manager

API .
(optional)

«-m
| ' Controller
' manager
‘l 4—4 etcd
| Y Node Node Node (persistence store)
api
/ l | kubelet
etcd
sched
O L0 LE
k-proxy, k-proxy, k-proxy,

|
|
|
~— — —— S Control plane ——————-

>

ey cle)clelele)

Node

Figure 1: Kubernetes Components

The Need for Full Cloud Stack Posture Management and Workload Protection

Achieving the necessary deep visibility into and control of both planes requires aspects of both posture
management and workload protection. In other words, ensuring security and compliance of Kubernetes
deployments requires the monitoring, configuration management, and guardrails of CSPM and the real-time,
deep visibility and granular control of CWPP. Plus, because Kubernetes sits in the middle of the cloud application
stack, visibility and control must be consistent across the entire stack. For example, locking down Kubernetes
identity and access management (IAM) without aligning with the underlying cloud infrastructure IAM (e.g., laasS,
PaaS, FaaS) can leave a significant gap in coverage due to mismatched privileges and identities.

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

Three Steps to Kubernetes Deployment
Security and Compliance

Once you have a better understanding of the underlying dynamics and architecture of Kubernetes and its
central role in the cloud application stack, achieving the necessary Kubernetes posture management and
workload protection is a three-step process:

1. Hardening. Instrument and harden (using? best practice configuration settings) the Kubernetes orchestration

layer.

2. Visibility and control. Implement deep visibility and control to detect immediately — and mitigate —any
missing or changed settings during runtime. This step also includes detecting anomalous and malicious
activity.

3. Runtime guardrails. Implement guardrails that define the range of settings and configurations meeting the
cloud application's security and compliance requirements during runtime. Security needs include tight
governance of core cloud functions such as identity, infrastructure as code, and compliance.

Instrumenting and Hardening the Kubernetes Environment
The first step is instrumenting and hardening Kubernetes for a secure and compliant deployment. Though this is

a complex process, there are four primary actions that an organization must take:

1. Configure and use Kubernetes-native security controls. For example, native to Kubernetes are role-based
access control (RBAC), pod security policies (PSP), network policies, and secrets management. One config
change during deployment (e.g., exposing an RDP port) could lead to a severe breach.

2. Harden both the Kubernetes control and data plane configurations. There are heaps of settings that DevOps
and security must set correctly to harden a Kubernetes deployment (e.g., Seccomp, AppArmor).

3. Augment Kubernetes-native functions with additional controls, including micro-segmentation firewalls,
encryption, and image scanning.

4. Configure and protect the broader Kubernetes ecosystem (e.g., using Service Mesh).

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

The details of implementing these capabilities go beyond the scope of this paper. However, the Cloud Native
Computing Foundation (CNCF) provides one of the best architectures for Kubernetes security.? As shown in
Figure 2, the workload orchestration security model covers native security functions of Kubernetes and the

additional controls necessary for instrumenting and locking down Kubernetes.

S Control Container/Pod/ Access Data

= Plane Function (CNI, Ingress) Volumes
£

(]

9]

S

o RBAC Admission Network Pod Container Image
No) Control Policy Security Security Auth
o

~

[

o

2

Audit - Orchestration Audit Log

Figure 2: CNCF Workload Orchestration Security Model

Implementing Deep Visibility and Control for Kubernetes

After locking down Kubernetes, the next step is establishing deep visibility to achieve and maintain the security
and compliance of a Kubernetes deployment.

This visibility is essential because once a container spins up, it should be immutable (no changes to its
configuration). A runtime change to a container could be indicative of a Kubernetes breach. Therefore, any
changes to a running container must trigger immediate action. As the CNCF states, “It is important to monitor
and detect any changes to the initial configurations made in runtime to ensure the continued security posture of
the cluster.”

Delivering this level of visibility requires deep hooks into the Kubernetes/container environment. For example, it is
imperative to see core Kubernetes attributes, such as pod name, type, deployment, namespace data, user access,

container start-stop, and container image status.

Obtaining this level of Kubernetes visibility is not possible through audit log monitoring alone. Additionally, the
security approach must provide kernel-level visibility into all Kubernetes activity, configuration settings, and
security controls. This visibility opens the door to monitoring and enforcing organization controls based on
pre-defined clusters' profile and compliance requirements.

3 Source: CNCF Cloud-native Security Whitepaper

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots 8

Detecting Anomalous Kubernetes Behaviors and Threat Actors

Going deeper, detecting configuration changes is important but not sufficient. The Kubernetes API requires
monitoring with forensics to see if these configuration changes are anomalous behavior. This requirement is
essential within multi-cluster Kubernetes environments to prevent sensitive workloads from moving across

cluster borders (e.g., our wayward PCI payload).

Also, security must account for threat actors. After all, one of the best ways to differentiate a benign anomaly
from a malicious anomaly is to align with the threat landscape. This alignment requires fine-grained detection at
the container/pod level that correlates with threat feeds to immediately identify indicators of compromise (loC)
and potentially even identify tactics, techniques, and procedures (TTPs).

Detection without Response Is a Non-Starter

Finally, simply detecting a Kubernetes configuration change or anomalous activity and then alerting a security
information and event management (SIEM) or security orchestration automation and response (SOAR) system is
a non-starter for protecting a Kubernetes deployment. Things move too fast to control changes or anomalies
manually and indirectly. With containers, workloads come and go in seconds.

The security team must institute detection and response rules that trigger automated or semi-automated
responses to detected configuration changes and anomalous behavior. However, given Kubernetes’ central role
in the application stack, this automation cannot operate in a vacuum. Any automated response for Kubernetes
must be in the context of full cloud stack posture management.

Holistic Kubernetes Security and
Posture Management

The last step for Kubernetes security and compliance is implementing guardrails to protect and govern
Kubernetes from a full-stack perspective. These guardrails are essential for preventing security drift by enforcing
security best practices for application deployments, thus securely enabling Kubernetes’ speed of innovation.
These security best practices include implementing benchmarks for Kubernetes configurations and least privilege
access (LPA) with cloud IAM, governing infrastructure as code (laC) templates, and maintaining continuous
regulatory and Industry compliance.

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots

9

Configuration Guardrails

Kubernetes has hundreds of possible configuration settings. Many of these settings have profound security and
compliance implications. To address this, the Center for Internet Security (CIS) has released a series of
benchmarks or prescriptive security guidelines for configuring both the Kubernetes control and data planes.
Protecting a Kubernetes deployment requires running these benchmarks automatically when deploying and then
tracking in real time when a configuration change differs from a benchmark recommendation. The CIS
benchmarks become a guardrail that permits flexibility to adjust a Kubernetes deployment during runtime

without allowing changes to negatively affect the cluster’s security and compliance posture.

Cloud IAM

Essential to protecting a Kubernetes deployment are establishing and managing LPA. To do this requires IAM
guardrails throughout the cloud application stack, including Kubernetes. At a minimum, Kubernetes must be
wired with controls to detect, monitor, and act on any RBAC and admission controller activity. This IAM control
must align with the broader cloud stack IAM. For example, an application running on Amazon EKS must
authenticate to access other APIs for many different functions running outside EKS (e.g., compute, storage,
database, machine learning).

Cloud laC

As a declarative infrastructure, a Kubernetes deployment is heavily reliant on laC. Infrastructure as code uses a
configuration language (e.g., Terraform) that defines what the infrastructure (e.g., a Kubernetes cluster) should

look like at the end state, rather than prescribing the steps necessary to get there.

On the plus side, there are benefits to using laC with Kubernetes, including reducing human error, maintaining

consistency, improving change tracking and auditing, and accelerating recovery in a catastrophic failure.

On the downside, because Kubernetes has a control plane and interacts with workloads throughout the cloud
stack, organizations require a solution that scans laC and API calls for the entire cloud stack, including
Kubernetes clusters.

Cloud Compliance

Finally, an essential Kubernetes guardrail is maintaining regulatory and industry compliance. The intentional
dynamism of Kubernetes results in containers’ continually spinning up, spinning down, and moving around. Any
one of these actions could violate an overarching compliance requirement such as PCl, General Data Protection
Regulation (GDPR), or Health Insurance Portability and Accountability Act (HIPAA)). Plus, compromise of the
Kubernetes data plane can easily lead to a catastrophic data breach.

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots 10

Maintaining compliance in a Kubernetes deployment requires implementing policy templates and continual
cloud-specific implementation (e.g., EKS, GKE, AKS) checks, similar to running CIS benchmarks. Running these
checks mandates deep visibility into the Kubernetes environment, the infrastructure on which it is running, and
the workloads it is supporting.

Conclusion

Following the three-step process to protect Kubernetes deployments removes potential Kubernetes security blind
spots by implementing both workload and posture management. This approach also gives security and
compliance teams the flexibility to select the right cloud security solution by focusing on the functional
requirements that best meet the organization’s needs. These functional requirements include:

e Kubernetes hardening

e Deep visibility and control of data and control planes, including detection of anomalous behavior and
threats

e Guardrails to protect the cluster configuration, IAM, laC, and compliance of the entire cloud application

stack deployment

Though Kubernetes security is challenging, security teams can manage risk effectively by taking this approach to
secure Kubernetes deployments. Plus, with this approach, teams will free Application Development and DevOps
teams to better innovate by securely enabling the flexibility, dynamism, and speed of Kubernetes.

Request a personalized demo.

RAPID)) Cloud and Kubernetes - Removing the Security Blind Spots 11

https://www.rapid7.com/products/divvycloud/#form

