
WHITEPAPER

Security Report
for In-Production
Web Applications

Security Report for In-Production Web Applications 2

TABLE OF CONTENTS

Web Application Attack Highlights	 3

Top Five Most Common Incidents	 3

Key Facts on Vulnerabilities	 3

Overview	 4

Report Parameters	 4

Executive Summary	 5

Industry Trends	 6

The Top Five Incidents: tCell vs. OWASP	 6

Why is Web Application Security Essential?	 7

Key Findings	 8

Summary of Attack Findings	 8

The Top Five Most Common Incidents	 9

Cross-Site Scripting (XSS) is Common in Web Applications	 10

Cryptomining is on the Rise	 10

The Seven Most Commonly Found Weaknesses	 11

Orphan Routes and APIs Add Risk Exposure	 12

Automated Threats	 12

Conclusion	 13

Security Report for In-Production Web Applications 3

Web Application Attack Highlights

Top Five Most Common Incidents in Q2 2018

•	Cross-Site Scripting (XSS)

•	SQL Injection (SQLi)

•	Automated Threats

•	File Path Traversal

•	Command Injection (CMDi)

KEY FACTS ON VULNERABILITIES

Average Time to Patch a Vulnerability (regardless of severity level) 38 days (from discovery to patch)

Average time taken to patch High Severity Vulnerability 34 days

Average time taken to patch Medium Severity Vulnerability 39 days

Average time taken to patch Low Severity Vulnerability 54 days

Oldest unpatched CVE 340 days

Security Report for In-Production Web Applications 4

Overview

We are proud to share our Security Report for In-Production Web Applications.

The report summarizes our key findings on the most prevalent types of real-world attack that occur inside in-production web
applications. The data in the report has been anonymized and aggregated to protect the innocent.

tCell by Rapid7 is an industry leader in protecting web applications at runtime, and as such, we come across a wide array of
application attacks, from the simplest to the most complicated. Over Q2 2018, our team analyzed over 316 million incidents
across our entire customer base.

REPORT PARAMETERS

Sample Size 316 million incidents

Period Q2 2018

Type of Traffic Production Applications

Audience for Report “C” Level, Security Professionals, DevOps, Developers and Operations

Security Report for In-Production Web Applications 5

Executive Summary

This high-level report summarizes the key threats that
tCell came across in Q2 2018. The data in this report has
been collected, aggregated, compiled, and anonymized
from actual production application traffic in the AWS
and Azure cloud ecosystems.

tCell protects web applications at runtime and acts
as the first line of defense for these applications.
As we become a part of the application itself by
installing an agent on the application server and
browser, tCell is in the unique position of being able
to observe attacks against the application first hand
and thereby gain an unmatched perspective.

When it comes to cybersecurity breaches, attacks
against the application continue to represent a major
risk to enterprise. Furthermore, attacks against web
applications are growing in volume and sophistication.

We observed two primary dynamics at play across
the 60-day observation period:

•	Attempted Cross-Site Scripting (XSS) attacks,
which are aimed at the application user, were
the most common type of security incident.

•	SQL Injection, which is used to access sensitive
information or run OS commands to gain further
ccess to a system, was the second most popular
attack method.

In terms of CVEs (Common Vulnerabilities and Exposures),
we detected the following key trends:

•	90% of active applications had a known CVE, while
30% had a critical CVE during this time period

•	There were an average of 2,900 orphaned routes
or exposed API end-points per application.
This represents an attack surface with no
current business function, thus representing
security blind spots

•	On average, it took 34 days for an organization
to patch their most critical CVEs (Please note
this statistic may be affected by a larger profiled
organization taking significantly longer to patch
than many smaller ones)

This report was designed to uncover new areas of risk in
application security, and confirm the presence of threats,
vulnerabilities, and security incidents that teams had
previously only suspected. It is our hope that you can
leverage the findings to better protect your organizations
against these emerging threats.

Security Report for In-Production Web Applications 6

Industry Trends

The Top Five Incidents: tCell vs. OWASP

The OWASP (Open Web Application Security Project) Top Ten is one of the most popular lists for classifying web
application threats and security flaws. According to the 2017 OWASP Top Ten, the leading attack was Injection Flaws,
followed by Broken Authentication.

Injection flaws, such as SQL, LDAP, and OS injection, essentially enable attackers to send malicious code through an application
to another system. Injection flaws occur when suspicious data is sent to an interpreter as part of a command or query to trick
the interpreter into executing unintending commands, or providing access to data without the correct authorization.

Broken authentication occurs when application functions connected to authentication and/ or session management are not
correctly implemented, allowing attackers to compromise passwords, session tokens, keys, or to exploit other flaws stemming
from incorrect implementation. It can lead to the assumption of other users’ identities.

In tCell’s analysis, our top five attacks differ from OWASP’s top five. The main reason for this is that tCell protects applications
in-production that reside in the AWS, Azure and Google cloud environments. This gives us an unique perspective on application
security in production, and the nature of the attacks themselves.

TCELL OWASP

1 Cross Site-Scripting Injection Flaws

2 SQL Injection Broken Authentication

3 Automated Threats Sensitive Data Exposure

4 File Path Traversals XML External Entities

5 Command Injection Broken Access Control

Security Report for In-Production Web Applications 7

Why is Web Application
Security Essential?
In the 2017 Verizon Data Breach Investigations Report,
the most common attack pattern associated with an
actual breach was web application attacks. Akamai,
in its most recent State of the Internet Report, found that
web application attacks had gone up by 10% year-on-year,
representing a significant security threat to enterprises.
There were 128 million alerts in Q4 2017 in the U.S. alone.

Web application attacks had
gone up by 10% year-over-year

The majority of web application attacks are the result of
overall scanning for vulnerabilities; however, many others
are real attempts to compromise a particular target. In our
report last year, one of the biggest takeaways we found
was that web application attacks are noisy, with an attack
to breach ratio of 100k to 1. According to our findings this
year, this ratio hasn’t changed. Web application attacks are
noisy because hackers are using tools to automate attacks,
essentially using automation to probe web applications for
weak spots. From a security operations standpoint, this
makes finding a successful attack much more difficult.
We believe the reason technology like runtime application
self-protection is gaining popularity is because the need
to reduce the signal to noise ratio is crucial to discovering
breaches. Additionally, web application threats are
so frequent that they can make it challenging for
organizations to simply keep their web application
firewalls running effectively, and reduce capacity for
taking care of updates to security systems.

Web applications, particularly those in the cloud,
are vulnerable by their very nature, particularly so as
applications become more sophisticated and attacks
become both more complex and yet more every day.
Anyone with an Internet connection and a web browser
can determine a target and wreak chaos on that business
or organization. An automated script exposing a loophole
can immediately open the door for more advanced attacks,
allowing attackers to gain access to an enterprise’s network,
increase their privileges, and/or gain access to confidential
data. A breach of a web application can cause significant
damage, particularly if it is not rapidly detected and taken
care of.

Most appsec efforts to date have been focused either
on creating more secure applications or on attempting
to deploy network appliances to protect in production.
The rapid growth of DevOps, containerization,
microservices and cloud deployments have made
it more essential to secure apps in production, yet
simultaneously more difficult to do so. DevOps teams
have to code securely whilst also keeping up with
weekly, daily, or hourly releases. Likewise, security
teams struggle to keep up with the required pace of
updates while also issuing real-time threat data to help
prioritize operations.

At Rapid7, we see security activity in production
applications themselves — not theoretical vulnerabilities
or possible outcomes, but the actual attacks as they occur.
We looked at 316 million incidents over a sixty-day period
to determine the trends identified in this report. Our key
findings can provide useful insight to our clients, allowing
them to measure themselves against what they are seeing
in production.

Security Report for In-Production Web Applications 8

Key Findings

SUMMARY OF ATTACK FINDINGS

Top 5 Most Common Incidents 1. Cross-Site Scripting (XSS)

2. SQL Injection

3. Automated Threats

4. File Path Traversal

5. Command Injection

Average Time to Patch a Vulnerability
(regardless of severity level)

38 days
(from discovery to patch)

Average time taken to patch High Severity Vulnerability 34 days

Average time taken to patch Medium Severity Vulnerability 39 days

Average time taken to patch Low Severity Vulnerability 54 days

Oldest Unpatched CVE 340 days

Top Seven Weaknesses (CWEs) Found Most Frequently 1. CWE-264 Permissions, Privileges & Access Controls

2. CWE-284 Improper Access Control

3. CWE-254 Security Features

4. CWE-20 Improper Input Validation

5. CWE-200 Information Exposure

6. �CWE-22 Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal’)

7. CWE-19 Data Handling

Percentage of Apps with Known CVEs 90% of active applications

Routes/API Endpoints Exposed per App 2,900 orphaned routes exposed (average)

Automated Threats • Geo-Hop

• Targeted Attack

• Scanning Attack

• Distributed Targeted Attack

• Distributed Scanning Attack

Security Report for In-Production Web Applications 9

The Top Five Most Common Incidents

The top five most popular breaches
that tCell detected were (in order
of frequency):

1. Cross-Site Scripting

2. SQL Injection

3. Automated Threats

4. File Path Traversal

5. Command Injection

Cross Site-scripting (XSS) is one of the most frequent
kinds of application-layer web attacks. XSS vulnerabilities
allow attackers to target client-side scripts (in the user’s
web browser) rather than on the server-side. The idea is to
manipulate client-side scripts to behave according to the
attacker’s demands. A malicious script can be embedded
into web pages that execute every time the page is loaded.
XSS may also allow attackers to bypass access controls.

An SQL injection is a code injection method used in
particular against data-driven applications, in which
malicious SQL statements are inserted into an entry
field for execution. SQL injection attacks enable hackers
to create false identities, modify existing data or destroy
it, and/or become false administrators of a database.

An Automated Threat is software that is acting on
behalf of a user that identifies a requested file when one
server requests it from another. As we collect data from
the applications, we can tell if the interactions are the
result of a user or a script or bot traffic. This helps eliminate
false positives for good users and give us controls around
blocking automated attacks.

The File Path Traversal attack, if successful, can lead to
disclosure of sensitive data, such as the application source
code, server configuration, and compromise of OS users’
information. This data can then be built upon to further
develop an attack.

Command Injection vulnerabilities tend to occur when
data enters the application from an unauthorized source.
If the application executes the spoof command, it gives
an attacker privileges that they would otherwise not have.

JAVA PYTHON RUBY

Cross Site
Scripting

SQL
Injection

Cross Site
Request Forgery

SQL
Injection

Cross Site
Scripting

SQL
Injection

File Path
Traversal

Cross Site
Request Forgery

Cross Site
Scripting

Because all applications are built differently, we took a
look at the most popular languages across start-ups,
small and medium business (SMB), and enterprise
applications to distill the top 3 most popular attack
attempts by language. As companies improve their
software development lifecycles (SDLCs), it is vital to
take into account what common real-world attacks are
happening against the languages that the application is
built on. Having this data can help lead developer training
to better code against these attacks.

Security Report for In-Production Web Applications 10

Cross-Site Scripting (XSS) is Common
in Web Applications

XSS attacks were the most popular attack type that
tCell detected across the 60-day period. They can
represent different degrees of threat, from a minor
nuisance to a serious security risk, depending on the
confidentiality of the data handled by the site at risk
and the nature of security mitigation implemented
by the site owner.

However, the vast majority of XSS are merely attack
attempts. In our report last year, we found that only one
in 1,200 attempts were successful, which made it difficult
to separate the successful attack, or breach, from the
attempts. Most security operations try to detect this attack
on the network or server side; however, the attack lands on
the client-side browser. This means, traditionally, it is very
hard to know if one of these attempts has

been successful (or not) at getting code to run in the
browser. Due to the nature of tCell’s instrumentation
in the browser, we can see which of our client’s users
have been compromised by XSS. During the sixty-day
period alone, there were five confirmed XSS breaches.

0.31% of users’ browsers
were infected with malware

tCell’s out of the box Browser Security instruments the
client- side browser through the delivery of the application
and provides protections against browser-based attacks like
XSS, Clickjacking, and Cryptomining, and flags end-users
whose browsers have been compromised with malware.
The impact of this shows that the browser is inherently
vulnerable and in return should be incorporated as part of
your application security posture. Across all organizations,
we are able to see that 0.31% of users’ browsers were
infected with malware.

At Rapid7, we understand this and inject a Javascript agent
into the browser itself to detect when an XSS incident is
actually successful. This gives us an unique perspective
into what is attempted vs. what is successful, which can
offer a security team tangible peace of mind and concrete
savings in efficiency as it eliminates the need to sift through
thousands of alerts to get to a handful of actual attacks.

Cryptomining is on the Rise

Computers being taken over for illegal cryptocurrency
mining is a rising trend worldwide. Applications running
unexpected code in the browser could indicate cryptomining
activity, and should be investigated. Illegally installed
mining tools can cause applications and hardware to crash
because of their heavy use of computing power, preventing
the CPU from executing other tasks and potentially denying
service to the application’s users. From an end-user
perspective, there’s not much that can be done. End-users
now need to monitor their system performance to look
for websites that take up significant resources. From
a company perspective, eliminating the ability to land a
Cross Site Scripting attack will dramatically decrease the
likelihood of a successful cryptomining attempt. This will
provide a way to protect the end-users’ browser without
requiring them to change their behavior or the way they
interact with the application or website.

Endpoint protection, web filtering tools, and Content
Security Policies should be enabled (and regularly updated)
to detect and block cryptomining scripts. To protect web
applications from cryptomining, it is essential that the
initial attack is blocked. According to Imperva, 88% of
all remote code execution (RCE) attacks in December
2017 sent a request to an external source to attempt
to download a cryptomining malware. They are aimed
at exploiting vulnerabilities in the web application
source code; thus need to be taken seriously and
quickly addressed.

Security Report for In-Production Web Applications 11

The Seven Most Commonly Found Weaknesses

Commonly found weaknesses are designated using the Common Weakness Enumeration (CWE) vulnerability scoring system.
They indicate weaknesses that could lead to vulnerabilities (CVEs) in the right conditions. tCell identified the following CWEs
as the seven most commonly found weaknesses across apps:

1.	 CWE-264 Permissions, Privileges & Access Controls: Low Severity
This category relates to access control and its associated security features, including the management
of permissions and privileges.

2.	 CWE-284 Improper Access Control: Severity Varies by Context
This type of CVE is the result of an incorrect implementation of an architectural security tactic.
It fails to restrict access to a confidential resource from an unauthorized actor.

3.	 CWE-254 Security Features: High Severity
Software security is not security software. This category includes miscellaneous security features,
such as authentication, access control, confidentiality, cryptography, and privilege management.

4.	 CWE-20 Improper Input Validation: High Severity
This CVE allows an attacker to generate input in a manner that is not expected by the rest of the application.
It is the result of incorrect validation of input at the software level, which impacts the control flow or data flow
of a program.

5.	 CWE-200 Information Exposure: High Severity
A flaw either in architecture, design or implementation, which (intentionally or unintentionally) discloses
information to an unauthorized actor.

6.	 CWE-22 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’): High Severity
Many file operations are intended to take place within their given directory; however, this weakness occurs
when the software does not properly neutralize elements within the path name, allowing the attacker to access
a location outside of the restricted directory. The result is the attacker can access, read, or override, delete, or
corrupt critical files.

7.	 CWE-19 Data Handling: Severity Varies by Context
This category involves weaknesses related to functionality that processes data.

Security Report for In-Production Web Applications 12

Automated Threats

The OWASP Foundation classifies attacks as Automated
Threats when “web applications are subjected to unwanted
automated usage — day in, day out. Often these events
relate to misuse of inherent valid functionality, rather than
the attempted exploitation of unmitigated vulnerabilities”.
Common types of automated attacks include, scanning,
scraping, automated scripts, etc. We found that 47% of
organizations experienced an automated attack within
the 60-day period. What’s more interesting was that the
attacks were highly targeted at specific applications.

47% of organizations
experienced an automated attack

within the 60-day period

Orphan Routes and APIs Add Risk Exposure

tCell found that 2,900 routes/endpoints were exposed
per app (on average) whereas 92% of all routes and
API end-points are orphaned routes. An orphan route
is essentially when a part of the application has been
abandoned by developers. It represents “dead code”
with no business purpose and crucially in security
terms, an attack surface that is frequently unsecured.
These endpoints may not affect the operations of the
application itself; however, they represent a blind spot to
your security and operations teams that can be attacked
and thus should be eliminated. As interconnectivity of
businesses and applications grow, understanding that
your attack surface area is exponentially growing through
the use of APIs is a critical metric to monitor. The bottom
line is that developers need to focus their attention on
cutting out these orphan routes altogether, reducing attack
surface with no reduction in application functionality.

92% of all routes and API
end-points are orphaned routes

Security Report for In-Production Web Applications 13

Conclusion

After reviewing our findings, it became quite clear that if you have an application exposed to the internet, you are going to get
attacked. There are no exceptions. The question then becomes a matter of how can organizations better position themselves
to get the data they need, in the time they need it, to make decisions that thwart real attacks. Very few organizations have the
granular level of visibility that tCell can provide on runtime, in-production applications. We remove security blind-spots because
our Next-Gen Cloud WAF integrates runtime application self-protection. This allows us to focus on the actual security risks
posed to applications rather than on potential or noisy threats, as many security operations teams have to.

Increasing numbers of enterprises want transparency about the types of threats posed to their web apps: they want to know
what the top types of attack are, which third-libraries are vulnerable, what represents an attack vs. a breach, where apps are
pulling their content from, and so on. By protecting your applications at all levels - in the browser, the web server and the app
server, tCell provides a fine level of detail in our monitoring and cloud analytics, allowing you to identify and analyze attacks
(and attempted breaches) in depth.

At Rapid7, our goal is to provide Security and DevOps teams with greater monitoring, visibility, detection and mitigation
against security breaches of all kinds, particularly those that occur within the app itself. As increasing numbers of
application are migrated to and developed for the cloud, this service has become increasingly essential.

Learn more at rapid7.com/tcell.

About Rapid7

Rapid7 (Nasdaq: RPD) is advancing security with visibility, analytics, and automation delivered through our Insight cloud.
Our solutions simplify the complex, allowing security teams to work more effectively with IT and development to reduce
vulnerabilities, monitor for malicious behavior, investigate and shut down attacks, and automate routine tasks. 7,800
customers rely on Rapid7 technology, services, and research to improve security outcomes and securely advance their
organizations. For more information, visit our website, check out our blog, or follow us on Twitter.

https://www.rapid7.com/tcell
https://www.rapid7.com/
https://blog.rapid7.com/
https://twitter.com/rapid7

