vulnerability
Oracle Linux: CVE-2024-35991: ELSA-2024-12682: Unbreakable Enterprise kernel security update (IMPORTANT) (Multiple Advisories)
Severity | CVSS | Published | Added | Modified |
---|---|---|---|---|
5 | (AV:L/AC:L/Au:S/C:N/I:N/A:C) | May 20, 2024 | Oct 16, 2024 | Jan 23, 2025 |
Severity
5
CVSS
(AV:L/AC:L/Au:S/C:N/I:N/A:C)
Published
May 20, 2024
Added
Oct 16, 2024
Modified
Jan 23, 2025
Description
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue
drain_workqueue() cannot be called safely in a spinlocked context due to
possible task rescheduling. In the multi-task scenario, calling
queue_work() while drain_workqueue() will lead to a Call Trace as
pushing a work on a draining workqueue is not permitted in spinlocked
context.
Call Trace:
<TASK>
? __warn+0x7d/0x140
? __queue_work+0x2b2/0x440
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x2b2/0x440
queue_work_on+0x28/0x30
idxd_misc_thread+0x303/0x5a0 [idxd]
? __schedule+0x369/0xb40
? __pfx_irq_thread_fn+0x10/0x10
? irq_thread+0xbc/0x1b0
irq_thread_fn+0x21/0x70
irq_thread+0x102/0x1b0
? preempt_count_add+0x74/0xa0
? __pfx_irq_thread_dtor+0x10/0x10
? __pfx_irq_thread+0x10/0x10
kthread+0x103/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The current implementation uses a spinlock to protect event log workqueue
and will lead to the Call Trace due to potential task rescheduling.
To address the locking issue, convert the spinlock to mutex, allowing
the drain_workqueue() to be called in a safe mutex-locked context.
This change ensures proper synchronization when accessing the event log
workqueue, preventing potential Call Trace and improving the overall
robustness of the code.
dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue
drain_workqueue() cannot be called safely in a spinlocked context due to
possible task rescheduling. In the multi-task scenario, calling
queue_work() while drain_workqueue() will lead to a Call Trace as
pushing a work on a draining workqueue is not permitted in spinlocked
context.
Call Trace:
<TASK>
? __warn+0x7d/0x140
? __queue_work+0x2b2/0x440
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x2b2/0x440
queue_work_on+0x28/0x30
idxd_misc_thread+0x303/0x5a0 [idxd]
? __schedule+0x369/0xb40
? __pfx_irq_thread_fn+0x10/0x10
? irq_thread+0xbc/0x1b0
irq_thread_fn+0x21/0x70
irq_thread+0x102/0x1b0
? preempt_count_add+0x74/0xa0
? __pfx_irq_thread_dtor+0x10/0x10
? __pfx_irq_thread+0x10/0x10
kthread+0x103/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The current implementation uses a spinlock to protect event log workqueue
and will lead to the Call Trace due to potential task rescheduling.
To address the locking issue, convert the spinlock to mutex, allowing
the drain_workqueue() to be called in a safe mutex-locked context.
This change ensures proper synchronization when accessing the event log
workqueue, preventing potential Call Trace and improving the overall
robustness of the code.
Solution
oracle-linux-upgrade-kernel-uek

NEW
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.