vulnerability
Amazon Linux 2023: CVE-2025-22013: Important priority package update for kernel (Multiple Advisories)
| Severity | CVSS | Published | Added | Modified |
|---|---|---|---|---|
| 5 | (AV:L/AC:L/Au:S/C:N/I:N/A:C) | Apr 8, 2025 | Jun 24, 2025 | Aug 5, 2025 |
Severity
5
CVSS
(AV:L/AC:L/Au:S/C:N/I:N/A:C)
Published
Apr 8, 2025
Added
Jun 24, 2025
Modified
Aug 5, 2025
Description
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state
There are several problems with the way hyp code lazily saves the host's
FPSIMD/SVE state, including:
* Host SVE being discarded unexpectedly due to inconsistent
configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to
result in QEMU crashes where SVE is used by memmove(), as reported by
Eric Auger:
https://issues.redhat.com/browse/RHEL-68997
* Host SVE state is discarded *after* modification by ptrace, which was an
unintentional ptrace ABI change introduced with lazy discarding of SVE state.
* The host FPMR value can be discarded when running a non-protected VM,
where FPMR support is not exposed to a VM, and that VM uses
FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR
before unbinding the host's FPSIMD/SVE/SME state, leaving a stale
value in memory.
Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME
state when loading a vCPU such that KVM does not need to save any of the
host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is
removed and the necessary call to fpsimd_save_and_flush_cpu_state() is
placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr'
should not be used, they are set to NULL; all uses of these will be
removed in subsequent patches.
Historical problems go back at least as far as v5.17, e.g. erroneous
assumptions about TIF_SVE being clear in commit:
8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving")
... and so this eager save+flush probably needs to be backported to ALL
stable trees.
KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state
There are several problems with the way hyp code lazily saves the host's
FPSIMD/SVE state, including:
* Host SVE being discarded unexpectedly due to inconsistent
configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to
result in QEMU crashes where SVE is used by memmove(), as reported by
Eric Auger:
https://issues.redhat.com/browse/RHEL-68997
* Host SVE state is discarded *after* modification by ptrace, which was an
unintentional ptrace ABI change introduced with lazy discarding of SVE state.
* The host FPMR value can be discarded when running a non-protected VM,
where FPMR support is not exposed to a VM, and that VM uses
FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR
before unbinding the host's FPSIMD/SVE/SME state, leaving a stale
value in memory.
Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME
state when loading a vCPU such that KVM does not need to save any of the
host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is
removed and the necessary call to fpsimd_save_and_flush_cpu_state() is
placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr'
should not be used, they are set to NULL; all uses of these will be
removed in subsequent patches.
Historical problems go back at least as far as v5.17, e.g. erroneous
assumptions about TIF_SVE being clear in commit:
8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving")
... and so this eager save+flush probably needs to be backported to ALL
stable trees.
Solutions
amazon-linux-2023-upgrade-bpftoolamazon-linux-2023-upgrade-bpftool-debuginfoamazon-linux-2023-upgrade-kernelamazon-linux-2023-upgrade-kernel6-12amazon-linux-2023-upgrade-kernel6-12-debuginfoamazon-linux-2023-upgrade-kernel6-12-debuginfo-common-aarch64amazon-linux-2023-upgrade-kernel6-12-debuginfo-common-x86-64amazon-linux-2023-upgrade-kernel6-12-modules-extraamazon-linux-2023-upgrade-kernel-debuginfoamazon-linux-2023-upgrade-kernel-debuginfo-common-aarch64amazon-linux-2023-upgrade-kernel-debuginfo-common-x86-64amazon-linux-2023-upgrade-kernel-develamazon-linux-2023-upgrade-kernel-headersamazon-linux-2023-upgrade-kernel-libbpfamazon-linux-2023-upgrade-kernel-libbpf-debuginfoamazon-linux-2023-upgrade-kernel-libbpf-develamazon-linux-2023-upgrade-kernel-libbpf-staticamazon-linux-2023-upgrade-kernel-livepatch-6-1-140-154-222amazon-linux-2023-upgrade-kernel-livepatch-6-12-22-27-96amazon-linux-2023-upgrade-kernel-modules-extraamazon-linux-2023-upgrade-kernel-modules-extra-commonamazon-linux-2023-upgrade-kernel-toolsamazon-linux-2023-upgrade-kernel-tools-debuginfoamazon-linux-2023-upgrade-kernel-tools-develamazon-linux-2023-upgrade-perfamazon-linux-2023-upgrade-perf6-12amazon-linux-2023-upgrade-perf6-12-debuginfoamazon-linux-2023-upgrade-perf-debuginfoamazon-linux-2023-upgrade-python3-perfamazon-linux-2023-upgrade-python3-perf6-12amazon-linux-2023-upgrade-python3-perf6-12-debuginfoamazon-linux-2023-upgrade-python3-perf-debuginfo
NEW
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.