vulnerability
Amazon Linux 2023: CVE-2025-38073: Important priority package update for kernel6.12
| Severity | CVSS | Published | Added | Modified |
|---|---|---|---|---|
| 7 | (AV:L/AC:M/Au:S/C:C/I:C/A:C) | Jun 18, 2025 | Jul 11, 2025 | Dec 4, 2025 |
Severity
7
CVSS
(AV:L/AC:M/Au:S/C:C/I:C/A:C)
Published
Jun 18, 2025
Added
Jul 11, 2025
Modified
Dec 4, 2025
Description
In the Linux kernel, the following vulnerability has been resolved:
block: fix race between set_blocksize and read paths
With the new large sector size support, it's now the case that
set_blocksize can change i_blksize and the folio order in a manner that
conflicts with a concurrent reader and causes a kernel crash.
Specifically, let's say that udev-worker calls libblkid to detect the
labels on a block device. The read call can create an order-0 folio to
read the first 4096 bytes from the disk. But then udev is preempted.
Next, someone tries to mount an 8k-sectorsize filesystem from the same
block device. The filesystem calls set_blksize, which sets i_blksize to
8192 and the minimum folio order to 1.
Now udev resumes, still holding the order-0 folio it allocated. It then
tries to schedule a read bio and do_mpage_readahead tries to create
bufferheads for the folio. Unfortunately, blocks_per_folio == 0 because
the page size is 4096 but the blocksize is 8192 so no bufferheads are
attached and the bh walk never sets bdev. We then submit the bio with a
NULL block device and crash.
Therefore, truncate the page cache after flushing but before updating
i_blksize. However, that's not enough -- we also need to lock out file
IO and page faults during the update. Take both the i_rwsem and the
invalidate_lock in exclusive mode for invalidations, and in shared mode
for read/write operations.
I don't know if this is the correct fix, but xfs/259 found it.
block: fix race between set_blocksize and read paths
With the new large sector size support, it's now the case that
set_blocksize can change i_blksize and the folio order in a manner that
conflicts with a concurrent reader and causes a kernel crash.
Specifically, let's say that udev-worker calls libblkid to detect the
labels on a block device. The read call can create an order-0 folio to
read the first 4096 bytes from the disk. But then udev is preempted.
Next, someone tries to mount an 8k-sectorsize filesystem from the same
block device. The filesystem calls set_blksize, which sets i_blksize to
8192 and the minimum folio order to 1.
Now udev resumes, still holding the order-0 folio it allocated. It then
tries to schedule a read bio and do_mpage_readahead tries to create
bufferheads for the folio. Unfortunately, blocks_per_folio == 0 because
the page size is 4096 but the blocksize is 8192 so no bufferheads are
attached and the bh walk never sets bdev. We then submit the bio with a
NULL block device and crash.
Therefore, truncate the page cache after flushing but before updating
i_blksize. However, that's not enough -- we also need to lock out file
IO and page faults during the update. Take both the i_rwsem and the
invalidate_lock in exclusive mode for invalidations, and in shared mode
for read/write operations.
I don't know if this is the correct fix, but xfs/259 found it.
Solutions
amazon-linux-2023-upgrade-bpftoolamazon-linux-2023-upgrade-bpftool-debuginfoamazon-linux-2023-upgrade-kernel6-12amazon-linux-2023-upgrade-kernel6-12-debuginfoamazon-linux-2023-upgrade-kernel6-12-debuginfo-common-aarch64amazon-linux-2023-upgrade-kernel6-12-debuginfo-common-x86-64amazon-linux-2023-upgrade-kernel6-12-modules-extraamazon-linux-2023-upgrade-kernel-develamazon-linux-2023-upgrade-kernel-headersamazon-linux-2023-upgrade-kernel-libbpfamazon-linux-2023-upgrade-kernel-libbpf-debuginfoamazon-linux-2023-upgrade-kernel-libbpf-develamazon-linux-2023-upgrade-kernel-libbpf-staticamazon-linux-2023-upgrade-kernel-livepatch-6-12-31-35-92amazon-linux-2023-upgrade-kernel-modules-extra-commonamazon-linux-2023-upgrade-kernel-toolsamazon-linux-2023-upgrade-kernel-tools-debuginfoamazon-linux-2023-upgrade-kernel-tools-develamazon-linux-2023-upgrade-perf6-12amazon-linux-2023-upgrade-perf6-12-debuginfoamazon-linux-2023-upgrade-python3-perf6-12amazon-linux-2023-upgrade-python3-perf6-12-debuginfo
NEW
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.