vulnerability
Amazon Linux 2023: CVE-2025-38488: Important priority package update for kernel (Multiple Advisories)
| Severity | CVSS | Published | Added | Modified |
|---|---|---|---|---|
| 7 | (AV:L/AC:M/Au:S/C:C/I:C/A:C) | Jul 28, 2025 | Sep 16, 2025 | Sep 16, 2025 |
Severity
7
CVSS
(AV:L/AC:M/Au:S/C:C/I:C/A:C)
Published
Jul 28, 2025
Added
Sep 16, 2025
Modified
Sep 16, 2025
Description
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in crypt_message when using async crypto
The CVE-2024-50047 fix removed asynchronous crypto handling from
crypt_message(), assuming all crypto operations are synchronous.
However, when hardware crypto accelerators are used, this can cause
use-after-free crashes:
crypt_message()
// Allocate the creq buffer containing the req
creq = smb2_get_aead_req(..., &req);
// Async encryption returns -EINPROGRESS immediately
rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
// Free creq while async operation is still in progress
kvfree_sensitive(creq, ...);
Hardware crypto modules often implement async AEAD operations for
performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS,
the operation completes asynchronously. Without crypto_wait_req(),
the function immediately frees the request buffer, leading to crashes
when the driver later accesses the freed memory.
This results in a use-after-free condition when the hardware crypto
driver later accesses the freed request structure, leading to kernel
crashes with NULL pointer dereferences.
The issue occurs because crypto_alloc_aead() with mask=0 doesn't
guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in
the mask, async implementations can be selected.
Fix by restoring the async crypto handling:
- DECLARE_CRYPTO_WAIT(wait) for completion tracking
- aead_request_set_callback() for async completion notification
- crypto_wait_req() to wait for operation completion
This ensures the request buffer isn't freed until the crypto operation
completes, whether synchronous or asynchronous, while preserving the
CVE-2024-50047 fix.
smb: client: fix use-after-free in crypt_message when using async crypto
The CVE-2024-50047 fix removed asynchronous crypto handling from
crypt_message(), assuming all crypto operations are synchronous.
However, when hardware crypto accelerators are used, this can cause
use-after-free crashes:
crypt_message()
// Allocate the creq buffer containing the req
creq = smb2_get_aead_req(..., &req);
// Async encryption returns -EINPROGRESS immediately
rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
// Free creq while async operation is still in progress
kvfree_sensitive(creq, ...);
Hardware crypto modules often implement async AEAD operations for
performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS,
the operation completes asynchronously. Without crypto_wait_req(),
the function immediately frees the request buffer, leading to crashes
when the driver later accesses the freed memory.
This results in a use-after-free condition when the hardware crypto
driver later accesses the freed request structure, leading to kernel
crashes with NULL pointer dereferences.
The issue occurs because crypto_alloc_aead() with mask=0 doesn't
guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in
the mask, async implementations can be selected.
Fix by restoring the async crypto handling:
- DECLARE_CRYPTO_WAIT(wait) for completion tracking
- aead_request_set_callback() for async completion notification
- crypto_wait_req() to wait for operation completion
This ensures the request buffer isn't freed until the crypto operation
completes, whether synchronous or asynchronous, while preserving the
CVE-2024-50047 fix.
Solutions
amazon-linux-2023-upgrade-bpftoolamazon-linux-2023-upgrade-bpftool6-12amazon-linux-2023-upgrade-bpftool6-12-debuginfoamazon-linux-2023-upgrade-bpftool-debuginfoamazon-linux-2023-upgrade-kernelamazon-linux-2023-upgrade-kernel6-12amazon-linux-2023-upgrade-kernel6-12-debuginfoamazon-linux-2023-upgrade-kernel6-12-debuginfo-common-aarch64amazon-linux-2023-upgrade-kernel6-12-debuginfo-common-x86-64amazon-linux-2023-upgrade-kernel6-12-develamazon-linux-2023-upgrade-kernel6-12-headersamazon-linux-2023-upgrade-kernel6-12-libbpfamazon-linux-2023-upgrade-kernel6-12-libbpf-debuginfoamazon-linux-2023-upgrade-kernel6-12-libbpf-develamazon-linux-2023-upgrade-kernel6-12-libbpf-staticamazon-linux-2023-upgrade-kernel6-12-modules-extraamazon-linux-2023-upgrade-kernel6-12-modules-extra-commonamazon-linux-2023-upgrade-kernel6-12-toolsamazon-linux-2023-upgrade-kernel6-12-tools-debuginfoamazon-linux-2023-upgrade-kernel6-12-tools-develamazon-linux-2023-upgrade-kernel-debuginfoamazon-linux-2023-upgrade-kernel-debuginfo-common-aarch64amazon-linux-2023-upgrade-kernel-debuginfo-common-x86-64amazon-linux-2023-upgrade-kernel-develamazon-linux-2023-upgrade-kernel-headersamazon-linux-2023-upgrade-kernel-libbpfamazon-linux-2023-upgrade-kernel-libbpf-debuginfoamazon-linux-2023-upgrade-kernel-libbpf-develamazon-linux-2023-upgrade-kernel-libbpf-staticamazon-linux-2023-upgrade-kernel-livepatch-6-1-147-172-266amazon-linux-2023-upgrade-kernel-livepatch-6-12-40-63-114amazon-linux-2023-upgrade-kernel-modules-extraamazon-linux-2023-upgrade-kernel-modules-extra-commonamazon-linux-2023-upgrade-kernel-toolsamazon-linux-2023-upgrade-kernel-tools-debuginfoamazon-linux-2023-upgrade-kernel-tools-develamazon-linux-2023-upgrade-perfamazon-linux-2023-upgrade-perf6-12amazon-linux-2023-upgrade-perf6-12-debuginfoamazon-linux-2023-upgrade-perf-debuginfoamazon-linux-2023-upgrade-python3-perfamazon-linux-2023-upgrade-python3-perf6-12amazon-linux-2023-upgrade-python3-perf6-12-debuginfoamazon-linux-2023-upgrade-python3-perf-debuginfo
NEW
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.