vulnerability
Red Hat: CVE-2025-22030: kernel: mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
| Severity | CVSS | Published | Added | Modified |
|---|---|---|---|---|
| 5 | (AV:L/AC:L/Au:S/C:N/I:N/A:C) | Apr 16, 2025 | Jul 9, 2025 | Jul 10, 2025 |
Description
In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding
the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock
(through crypto_exit_scomp_ops_async()).
On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through
crypto_scomp_init_tfm()), and then allocates memory. If the allocation
results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.
The above dependencies can cause an ABBA deadlock. For example in the
following scenario:
(1) Task A running on CPU #1:
crypto_alloc_acomp_node()
Holds scomp_lock
Enters reclaim
Reads per_cpu_ptr(pool->acomp_ctx, 1)
(2) Task A is descheduled
(3) CPU #1 goes offline
zswap_cpu_comp_dead(CPU #1)
Holds per_cpu_ptr(pool->acomp_ctx, 1))
Calls crypto_free_acomp()
Waits for scomp_lock
(4) Task A running on CPU #2:
Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1
DEADLOCK
Since there is no requirement to call crypto_free_acomp() with the per-CPU
acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is
unlocked. Also move the acomp_request_free() and kfree() calls for
consistency and to avoid any potential sublte locking dependencies in the
future.
With this, only setting acomp_ctx fields to NULL occurs with the mutex
held. This is similar to how zswap_cpu_comp_prepare() only initializes
acomp_ctx fields with the mutex held, after performing all allocations
before holding the mutex.
Opportunistically, move the NULL check on acomp_ctx so that it takes place
before the mutex dereference.
Solution
References
Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.