vulnerability
SUSE: CVE-2023-52738: SUSE Linux Security Advisory
Severity | CVSS | Published | Added | Modified |
---|---|---|---|---|
5 | (AV:N/AC:L/Au:N/C:N/I:N/A:P) | 05/21/2024 | 06/13/2024 | 02/18/2025 |
Description
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/fence: Fix oops due to non-matching drm_sched init/fini
Currently amdgpu calls drm_sched_fini() from the fence driver sw fini
routine - such function is expected to be called only after the
respective init function - drm_sched_init() - was executed successfully.
Happens that we faced a driver probe failure in the Steam Deck
recently, and the function drm_sched_fini() was called even without
its counter-part had been previously called, causing the following oops:
amdgpu: probe of 0000:04:00.0 failed with error -110
BUG: kernel NULL pointer dereference, address: 0000000000000090
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 609 Comm: systemd-udevd Not tainted 6.2.0-rc3-gpiccoli #338
Hardware name: Valve Jupiter/Jupiter, BIOS F7A0113 11/04/2022
RIP: 0010:drm_sched_fini+0x84/0xa0 [gpu_sched]
[...]
Call Trace:
amdgpu_fence_driver_sw_fini+0xc8/0xd0 [amdgpu]
amdgpu_device_fini_sw+0x2b/0x3b0 [amdgpu]
amdgpu_driver_release_kms+0x16/0x30 [amdgpu]
devm_drm_dev_init_release+0x49/0x70
[...]
To prevent that, check if the drm_sched was properly initialized for a
given ring before calling its fini counter-part.
Notice ideally we'd use sched.ready for that; such field is set as the latest
thing on drm_sched_init(). But amdgpu seems to "override" the meaning of such
field - in the above oops for example, it was a GFX ring causing the crash, and
the sched.ready field was set to true in the ring init routine, regardless of
the state of the DRM scheduler. Hence, we ended-up using sched.ops as per
Christian's suggestion [0], and also removed the no_scheduler check [1].
[0] https://lore.kernel.org/amd-gfx/[email protected]/
[1] https://lore.kernel.org/amd-gfx/[email protected]/
Solution(s)

Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.