vulnerability
Ubuntu: (CVE-2023-53065): linux vulnerability
Severity | CVSS | Published | Added | Modified |
---|---|---|---|---|
5 | (AV:L/AC:L/Au:S/C:N/I:N/A:C) | May 2, 2025 | May 8, 2025 | Jun 12, 2025 |
Description
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix perf_output_begin parameter is incorrectly invoked in perf_event_bpf_output
syzkaller reportes a KASAN issue with stack-out-of-bounds.
The call trace is as follows:
dump_stack+0x9c/0xd3
print_address_description.constprop.0+0x19/0x170
__kasan_report.cold+0x6c/0x84
kasan_report+0x3a/0x50
__perf_event_header__init_id+0x34/0x290
perf_event_header__init_id+0x48/0x60
perf_output_begin+0x4a4/0x560
perf_event_bpf_output+0x161/0x1e0
perf_iterate_sb_cpu+0x29e/0x340
perf_iterate_sb+0x4c/0xc0
perf_event_bpf_event+0x194/0x2c0
__bpf_prog_put.constprop.0+0x55/0xf0
__cls_bpf_delete_prog+0xea/0x120 [cls_bpf]
cls_bpf_delete_prog_work+0x1c/0x30 [cls_bpf]
process_one_work+0x3c2/0x730
worker_thread+0x93/0x650
kthread+0x1b8/0x210
ret_from_fork+0x1f/0x30
commit 267fb27352b6 ("perf: Reduce stack usage of perf_output_begin()")
use on-stack struct perf_sample_data of the caller function.
However, perf_event_bpf_output uses incorrect parameter to convert
small-sized data (struct perf_bpf_event) into large-sized data
(struct perf_sample_data), which causes memory overwriting occurs in
__perf_event_header__init_id.
Solution(s)
References
- CVE-2023-53065
- https://attackerkb.com/topics/CVE-2023-53065
- URL-https://git.kernel.org/linus/eb81a2ed4f52be831c9fb879752d89645a312c13
- URL-https://git.kernel.org/stable/c/3a776fddb4e5598c8bfcd4ad094fba34f9856fc9
- URL-https://git.kernel.org/stable/c/ac5f88642cb211152041f84a985309e9af4baf59
- URL-https://git.kernel.org/stable/c/ddcf8320003638a06eb1e46412e045d0c5701575
- URL-https://git.kernel.org/stable/c/eb81a2ed4f52be831c9fb879752d89645a312c13
- URL-https://git.kernel.org/stable/c/ff8137727a2af4ad5f6e6c8b9f7ec5e8db9da86c
- URL-https://www.cve.org/CVERecord?id=CVE-2023-53065

Explore Exposure Command
Confidently identify and prioritize exposures from endpoint to cloud with full attack surface visibility and threat-aware risk context.