In the Linux kernel, the following vulnerability has been resolved: binder: fix race between mmput() and do_exit() Task A calls binder_update_page_range() to allocate and insert pages on a remote address space from Task B. For this, Task A pins the remote mm via mmget_not_zero() first. This can race with Task B do_exit() and the final mmput() refcount decrement will come from Task A. Task A | Task B ------------------+------------------ mmget_not_zero() | | do_exit() | exit_mm() | mmput() mmput() | exit_mmap() | remove_vma() | fput() | In this case, the work of ____fput() from Task B is queued up in Task A as TWA_RESUME. So in theory, Task A returns to userspace and the cleanup work gets executed. However, Task A instead sleep, waiting for a reply from Task B that never comes (it's dead). This means the binder_deferred_release() is blocked until an unrelated binder event forces Task A to go back to userspace. All the associated death notifications will also be delayed until then. In order to fix this use mmput_async() that will schedule the work in the corresponding mm->async_put_work WQ instead of Task A.
With Rapid7 live dashboards, I have a clear view of all the assets on my network, which ones can be exploited, and what I need to do in order to reduce the risk in my environment in real-time. No other tool gives us that kind of value and insight.
– Scott Cheney, Manager of Information Security, Sierra View Medical Center